今年5月NVIDIA推出Ampere GPU架构的时候,公布了一套名为Selene的新型超级计算机,总性能在全球排名第7。Selene现在成为美国最快的工业系统,也是有史以来第二高能效的系统。Selene采用风冷方式,在标准数据中心内构建完成仅仅用了三周时间,而通常安装一套超级计算机需要9-12个月。如此之快,很可能是因为采用了NVIDIA即插即用的DGX系统,该系统配置了AMD CPU、A100 GPU和Mellanox HDDR网络。不久之后,佛罗里达大学宣布他们也构建了同样是基于DGX A100平台的超级计算机。因此,NVIDIA履行了首席执行官黄仁勋(Jensen Huang)的承诺,即NVIDIA不仅有GPU业务,还将在端到端数据中心的竞争中脱颖而出。
Selene不是NVIDIA首次涉足基于DGX的超级计算机,NVIDIA最早是在2017年推出Volta GPU的时候公布了SaturnV超级计算机。NVIDIA在构建自有超级计算机的过程中积累了很多经验,从而帮助NVIDIA将这些经验运用于学术界和大型云基础设施,同时为NVIDIA工程师们提供世界一流的产品设计和软件优化计算平台。SaturnV和Selene还可作为参考架构,供潜在客户进行测试,以确定是否可以满足他们的需求,让外界对于NVIDIA作为高性能基础设施的一级厂商充满信心。不仅佛罗里达大学对于NVIDIA系统的表现印象深刻,美国阿贡国家实验室、微软和洛克希德·马丁公司也都拥有了自己的DGX SuperPOD,而且该设计在HGX版本中已经开源,任何数据中心都可以根据需要自行构建。
许多媒体文章中都详细介绍过,这套系统是在疫情期间配置和安装的,为了遵守社交隔离政策,只有两个安装团队。我们在这里想重点谈一谈该系统对NVIDIA业务及其合作伙伴业务的意义和影响。
NVIDIA在DGX和HGX参考体系结构方面拥有丰富的经验,NVIDIA和合作伙伴网络也进行了整体的升级,提供从芯片和模块到包括软件、计算基础设施、网络和存储在内的全套数据中心。现在,客户可以直接找NVIDIA合作伙伴经销商或者DGX就绪数据中心合作伙伴安装DGX、DGX POD和DGX SuperPOD,或者以云的方式获得这些资源。可以肯定的是,DGX A100并不便宜,起价为19.9万美元,但是客户能够在几周之内(而不是几个月)就让系统平稳且低风险地运转起来。
NVIDIA尚未将该系统的收入数据从其他业务中划分出来,但是我预计这个产品系列将会迅速增长,成为NVIDIA的一个重要收入和利润来源。毕竟,NVIDIA到目前为止至少有十几个DGX客户,而Selene本身配置有280个DGX A100,如果有人要购买的话,标价为5600万美元。
最重要的是,NVIDIA一直在价值链上端发展,致力于将以往归于OEM合作伙伴的收入和利润收入自己的囊中。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。