今年5月NVIDIA推出Ampere GPU架构的时候,公布了一套名为Selene的新型超级计算机,总性能在全球排名第7。Selene现在成为美国最快的工业系统,也是有史以来第二高能效的系统。Selene采用风冷方式,在标准数据中心内构建完成仅仅用了三周时间,而通常安装一套超级计算机需要9-12个月。如此之快,很可能是因为采用了NVIDIA即插即用的DGX系统,该系统配置了AMD CPU、A100 GPU和Mellanox HDDR网络。不久之后,佛罗里达大学宣布他们也构建了同样是基于DGX A100平台的超级计算机。因此,NVIDIA履行了首席执行官黄仁勋(Jensen Huang)的承诺,即NVIDIA不仅有GPU业务,还将在端到端数据中心的竞争中脱颖而出。
Selene不是NVIDIA首次涉足基于DGX的超级计算机,NVIDIA最早是在2017年推出Volta GPU的时候公布了SaturnV超级计算机。NVIDIA在构建自有超级计算机的过程中积累了很多经验,从而帮助NVIDIA将这些经验运用于学术界和大型云基础设施,同时为NVIDIA工程师们提供世界一流的产品设计和软件优化计算平台。SaturnV和Selene还可作为参考架构,供潜在客户进行测试,以确定是否可以满足他们的需求,让外界对于NVIDIA作为高性能基础设施的一级厂商充满信心。不仅佛罗里达大学对于NVIDIA系统的表现印象深刻,美国阿贡国家实验室、微软和洛克希德·马丁公司也都拥有了自己的DGX SuperPOD,而且该设计在HGX版本中已经开源,任何数据中心都可以根据需要自行构建。
许多媒体文章中都详细介绍过,这套系统是在疫情期间配置和安装的,为了遵守社交隔离政策,只有两个安装团队。我们在这里想重点谈一谈该系统对NVIDIA业务及其合作伙伴业务的意义和影响。
NVIDIA在DGX和HGX参考体系结构方面拥有丰富的经验,NVIDIA和合作伙伴网络也进行了整体的升级,提供从芯片和模块到包括软件、计算基础设施、网络和存储在内的全套数据中心。现在,客户可以直接找NVIDIA合作伙伴经销商或者DGX就绪数据中心合作伙伴安装DGX、DGX POD和DGX SuperPOD,或者以云的方式获得这些资源。可以肯定的是,DGX A100并不便宜,起价为19.9万美元,但是客户能够在几周之内(而不是几个月)就让系统平稳且低风险地运转起来。
NVIDIA尚未将该系统的收入数据从其他业务中划分出来,但是我预计这个产品系列将会迅速增长,成为NVIDIA的一个重要收入和利润来源。毕竟,NVIDIA到目前为止至少有十几个DGX客户,而Selene本身配置有280个DGX A100,如果有人要购买的话,标价为5600万美元。
最重要的是,NVIDIA一直在价值链上端发展,致力于将以往归于OEM合作伙伴的收入和利润收入自己的囊中。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。