Nvidia今天宣布在谷歌公有云平台上提供最新的GPU A100。
Nvidia A100 Tensor Core GPU现在是作为Alpha版本提供的,是Google Compute Engine服务中最新Accelerator-Optimized VM(A2)实例家族的一个组成部分。
Nvidia称,这款芯片采用了Nvidia下一代Ampere架构,是Nvidia迄今为止最强大的GPU。A100主要针对人工智能训练和推理工作负载设计,与Volta GPU相比性能提高了20倍。
A100 Ampere芯片也是Nvidia尺寸最大的芯片,由540亿个晶体管组成,采用了Nvidia第三代Tensor核心,具有针对稀疏矩阵运算的加速功能,这一点特别适用于AI计算。
Google Cloud产品管理总监Manish Sainani表示:“Google Cloud客户经常提出,希望我们提供最新的硬件和软件服务,帮助他们推动人工智能和科学计算工作负载的创新。和此前采用Nvidia T4 GPU一样,我们很高兴通过最新的A2 VM系列成为第一个销售Nvidia A100 GPU的主流云提供商。我们也很高兴看到客户能够利用这些新能力。”
Nvidia表示,除了AI工作负载外,A100芯片还支持数据分析、科学计算、基因组学、边缘视频分析和5G服务等。
A100芯片还可以将自身划分为多个实例,一次同时执行多个任务,以及通过Nvidia NVLink互连技术连接多个A100芯片,以训练大型AI工作负载。
谷歌正在利用这个优势,新的Accelerator-Optimized VM(A2)实例家族包括一个a2-megagpu-16g选件,该选件允许客户一次使用多达16个A100 GPU,总共640 GB GPU内存和1.3 TB系统内存,每秒总带宽达到9.6 TB。
Nvidia表示,A100 GPU还提供较小型的配置,适用于运行要求较低的工作负载。Nvidia表示,不久的将来其他Google Cloud服务也将采用 A100 GPU,包括Google Kubernetes Engine和Google Cloud AI Platform。
Constellation Research分析师Holger Mueller表示,Nvidia在Google Cloud上提供A100 GPU对用户来说是一个好消息,因为这样用户就可以轻松地通过公有云使用Nvidia最新的芯片了。
Mueller说:“这对于Nvidia也是一次胜利,因为这样Nvidia就可以把最新的芯片转移到本地部署环境之外。对于Google来说,也是一次胜利,因为Google成为了支持Nvidia最新平台的首家大型云服务提供商。现在,就看数据分析师、开发人员和数据科学家了,他们可以使用这款新的芯片为他们下一代应用的AI组件提供支持。”
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。