Nvidia今天宣布在谷歌公有云平台上提供最新的GPU A100。
Nvidia A100 Tensor Core GPU现在是作为Alpha版本提供的,是Google Compute Engine服务中最新Accelerator-Optimized VM(A2)实例家族的一个组成部分。
Nvidia称,这款芯片采用了Nvidia下一代Ampere架构,是Nvidia迄今为止最强大的GPU。A100主要针对人工智能训练和推理工作负载设计,与Volta GPU相比性能提高了20倍。
A100 Ampere芯片也是Nvidia尺寸最大的芯片,由540亿个晶体管组成,采用了Nvidia第三代Tensor核心,具有针对稀疏矩阵运算的加速功能,这一点特别适用于AI计算。
Google Cloud产品管理总监Manish Sainani表示:“Google Cloud客户经常提出,希望我们提供最新的硬件和软件服务,帮助他们推动人工智能和科学计算工作负载的创新。和此前采用Nvidia T4 GPU一样,我们很高兴通过最新的A2 VM系列成为第一个销售Nvidia A100 GPU的主流云提供商。我们也很高兴看到客户能够利用这些新能力。”
Nvidia表示,除了AI工作负载外,A100芯片还支持数据分析、科学计算、基因组学、边缘视频分析和5G服务等。
A100芯片还可以将自身划分为多个实例,一次同时执行多个任务,以及通过Nvidia NVLink互连技术连接多个A100芯片,以训练大型AI工作负载。
谷歌正在利用这个优势,新的Accelerator-Optimized VM(A2)实例家族包括一个a2-megagpu-16g选件,该选件允许客户一次使用多达16个A100 GPU,总共640 GB GPU内存和1.3 TB系统内存,每秒总带宽达到9.6 TB。
Nvidia表示,A100 GPU还提供较小型的配置,适用于运行要求较低的工作负载。Nvidia表示,不久的将来其他Google Cloud服务也将采用 A100 GPU,包括Google Kubernetes Engine和Google Cloud AI Platform。
Constellation Research分析师Holger Mueller表示,Nvidia在Google Cloud上提供A100 GPU对用户来说是一个好消息,因为这样用户就可以轻松地通过公有云使用Nvidia最新的芯片了。
Mueller说:“这对于Nvidia也是一次胜利,因为这样Nvidia就可以把最新的芯片转移到本地部署环境之外。对于Google来说,也是一次胜利,因为Google成为了支持Nvidia最新平台的首家大型云服务提供商。现在,就看数据分析师、开发人员和数据科学家了,他们可以使用这款新的芯片为他们下一代应用的AI组件提供支持。”
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。