Nvidia今天宣布在谷歌公有云平台上提供最新的GPU A100。
Nvidia A100 Tensor Core GPU现在是作为Alpha版本提供的,是Google Compute Engine服务中最新Accelerator-Optimized VM(A2)实例家族的一个组成部分。
Nvidia称,这款芯片采用了Nvidia下一代Ampere架构,是Nvidia迄今为止最强大的GPU。A100主要针对人工智能训练和推理工作负载设计,与Volta GPU相比性能提高了20倍。
A100 Ampere芯片也是Nvidia尺寸最大的芯片,由540亿个晶体管组成,采用了Nvidia第三代Tensor核心,具有针对稀疏矩阵运算的加速功能,这一点特别适用于AI计算。
Google Cloud产品管理总监Manish Sainani表示:“Google Cloud客户经常提出,希望我们提供最新的硬件和软件服务,帮助他们推动人工智能和科学计算工作负载的创新。和此前采用Nvidia T4 GPU一样,我们很高兴通过最新的A2 VM系列成为第一个销售Nvidia A100 GPU的主流云提供商。我们也很高兴看到客户能够利用这些新能力。”
Nvidia表示,除了AI工作负载外,A100芯片还支持数据分析、科学计算、基因组学、边缘视频分析和5G服务等。
A100芯片还可以将自身划分为多个实例,一次同时执行多个任务,以及通过Nvidia NVLink互连技术连接多个A100芯片,以训练大型AI工作负载。
谷歌正在利用这个优势,新的Accelerator-Optimized VM(A2)实例家族包括一个a2-megagpu-16g选件,该选件允许客户一次使用多达16个A100 GPU,总共640 GB GPU内存和1.3 TB系统内存,每秒总带宽达到9.6 TB。
Nvidia表示,A100 GPU还提供较小型的配置,适用于运行要求较低的工作负载。Nvidia表示,不久的将来其他Google Cloud服务也将采用 A100 GPU,包括Google Kubernetes Engine和Google Cloud AI Platform。
Constellation Research分析师Holger Mueller表示,Nvidia在Google Cloud上提供A100 GPU对用户来说是一个好消息,因为这样用户就可以轻松地通过公有云使用Nvidia最新的芯片了。
Mueller说:“这对于Nvidia也是一次胜利,因为这样Nvidia就可以把最新的芯片转移到本地部署环境之外。对于Google来说,也是一次胜利,因为Google成为了支持Nvidia最新平台的首家大型云服务提供商。现在,就看数据分析师、开发人员和数据科学家了,他们可以使用这款新的芯片为他们下一代应用的AI组件提供支持。”
好文章,需要你的鼓励
杜克大学研究团队建立了首个专门针对Web智能体攻击检测的综合评估标准WAInjectBench。研究发现,现有攻击手段极其多样化,从图片像素篡改到隐藏弹窗无所不包。虽然检测方法对明显恶意指令有中等效果,但对隐蔽攻击几乎无能为力。研究构建了包含近千个恶意样本的测试数据库,评估了十二种检测方法,揭示了文本和图像检测的互补性。这项研究为Web智能体安全防护指明了方向,提醒我们在享受AI便利时必须保持安全意识。
生成式AI的兴起让谷歌和Meta两大科技巨头受益匪浅。谷歌母公司Alphabet第三季度广告收入同比增长12%达742亿美元,云服务收入增长33%至151.5亿美元,季度总收入首次突破千亿美元大关。Meta第三季度收入512.5亿美元,同比增长26%。两家公司都将大幅增加AI基础设施投资,Meta预计2025年资本支出提升至700亿美元,Alphabet预计达910-930亿美元。
加州大学圣地亚哥分校研究团队系统研究了AI智能体多回合强化学习训练方法,通过环境、策略、奖励三大支柱的协同设计,提出了完整的训练方案。研究在文本游戏、虚拟家庭和软件工程等多个场景验证了方法有效性,发现简单环境训练能迁移到复杂任务,监督学习初始化能显著减少样本需求,密集奖励能改善学习效果。这为训练能处理复杂多步骤任务的AI智能体提供了实用指南。