TensorFlow与Keras加持,基于NVIDIA Jetson Nano的新应用助力智慧城市应用下网络和云资源的最佳整理利用。
今天的智慧城市应用主要依赖于对大量摄像头视频数据的分析。由此,对视频中最相关的事件的识别与推理能力对于构建高效、可扩展的应用至关重要。
在最近结束的边缘AI挑战赛中,SmellslikeML团队提出了一个基于NVIDIA Jetson Nano的应用,并以此斩获智能视频分析和智慧城市类别二等奖。
该应用的核心是在Jetson Nano上使用TensorFlow和Keras进行模型学习和运行的自动编码器模型。模型通过学习每个即将出现的视频帧的场景上下文实现标记异常事件的能力开发。该小组建议使用DeepStream SDK处理这些异常事件,从而做出进一步推理,例如识别和追踪场景中的对象。
在有连续活动的场景中(例如繁忙的道路),这种追踪并标记异常图像的方法优于简单的运动检测算法。在下面的视频中,该应用正确标记了异常事件,此过程中的图像馈送也减少了100倍。
模型正确识别可以进一步分析的异常事件
根据该团队的建议,这一模型可以应用于视频分析管道中,从而实现智慧城市应用中对网络和云资源的最佳整理利用。
新一代自主机器嵌入式系统NVIDIA Jetson将现代AI的力量带入数百万边缘设备,开启嵌入式物联网应用程序新领域。专区有最新活动、产品、资源和学习内容,带您感知AI新维度。访问地址:http://www.zhiding.cn/special/jetson
好文章,需要你的鼓励
斯坦福大学研究发现,主要用英语训练的大型语言模型竟能自发学会处理其他语言任务,无需明确教学。这种跨语言迁移能力随模型规模增大而显著提升,通过形成"通用语义空间"实现不同语言间的知识迁移。研究为降低多语言AI开发成本、支持资源稀缺语言提供了新途径,但仍面临性能不均衡、文化适应性等挑战。
从金冠到雅客、友臣、蜡笔小新,这些曾风靡小卖铺与超市货架的老牌零食厂商,一度因渠道滞后、品牌老化而淡出人们视野。而如今,它们在拼多多上正迎来一场集体复兴。
阿姆斯特丹大学与Salesforce合作开发的奖励引导推测解码(RSD)技术,通过让小模型处理简单任务、大模型解决复杂问题的智能分工,在保持推理准确率的同时大幅提升计算效率。该技术在数学推理等任务中表现出色,计算量最多可减少75%,为AI应用的普及和成本降低提供了重要技术支撑。