TensorFlow与Keras加持,基于NVIDIA Jetson Nano的新应用助力智慧城市应用下网络和云资源的最佳整理利用。
今天的智慧城市应用主要依赖于对大量摄像头视频数据的分析。由此,对视频中最相关的事件的识别与推理能力对于构建高效、可扩展的应用至关重要。
在最近结束的边缘AI挑战赛中,SmellslikeML团队提出了一个基于NVIDIA Jetson Nano的应用,并以此斩获智能视频分析和智慧城市类别二等奖。
该应用的核心是在Jetson Nano上使用TensorFlow和Keras进行模型学习和运行的自动编码器模型。模型通过学习每个即将出现的视频帧的场景上下文实现标记异常事件的能力开发。该小组建议使用DeepStream SDK处理这些异常事件,从而做出进一步推理,例如识别和追踪场景中的对象。
在有连续活动的场景中(例如繁忙的道路),这种追踪并标记异常图像的方法优于简单的运动检测算法。在下面的视频中,该应用正确标记了异常事件,此过程中的图像馈送也减少了100倍。
模型正确识别可以进一步分析的异常事件
根据该团队的建议,这一模型可以应用于视频分析管道中,从而实现智慧城市应用中对网络和云资源的最佳整理利用。
新一代自主机器嵌入式系统NVIDIA Jetson将现代AI的力量带入数百万边缘设备,开启嵌入式物联网应用程序新领域。专区有最新活动、产品、资源和学习内容,带您感知AI新维度。访问地址:http://www.zhiding.cn/special/jetson
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。