TensorFlow与Keras加持,基于NVIDIA Jetson Nano的新应用助力智慧城市应用下网络和云资源的最佳整理利用。
今天的智慧城市应用主要依赖于对大量摄像头视频数据的分析。由此,对视频中最相关的事件的识别与推理能力对于构建高效、可扩展的应用至关重要。
在最近结束的边缘AI挑战赛中,SmellslikeML团队提出了一个基于NVIDIA Jetson Nano的应用,并以此斩获智能视频分析和智慧城市类别二等奖。
该应用的核心是在Jetson Nano上使用TensorFlow和Keras进行模型学习和运行的自动编码器模型。模型通过学习每个即将出现的视频帧的场景上下文实现标记异常事件的能力开发。该小组建议使用DeepStream SDK处理这些异常事件,从而做出进一步推理,例如识别和追踪场景中的对象。
在有连续活动的场景中(例如繁忙的道路),这种追踪并标记异常图像的方法优于简单的运动检测算法。在下面的视频中,该应用正确标记了异常事件,此过程中的图像馈送也减少了100倍。
模型正确识别可以进一步分析的异常事件
根据该团队的建议,这一模型可以应用于视频分析管道中,从而实现智慧城市应用中对网络和云资源的最佳整理利用。
新一代自主机器嵌入式系统NVIDIA Jetson将现代AI的力量带入数百万边缘设备,开启嵌入式物联网应用程序新领域。专区有最新活动、产品、资源和学习内容,带您感知AI新维度。访问地址:http://www.zhiding.cn/special/jetson
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。