英特尔今天宣布与在线教育课程提供商Udacity展开合作,推出面向有兴趣在网络边缘部署人工智能模型的开发者的新课程。
边缘计算是指计算是运行在设备本身而不是在云中的,这样可以更快地处理数据,消除了将数据传输到云服务器的安全风险,降低了数据传输成本,以及带宽中断影响性能的风险。
今天公布的这项计划名为Intel Edge AI for IoT Developers Nanodegree,其目标是让开发者熟悉英特尔的OpenVINO工具包,该工具包用于在便于部署预训练的深度学习模型,使用C ++或者Python推理引擎应用API。
英特尔认为,随着医疗、制造和零售等行业越来越多地在边缘部署AI来收集更准确的实时洞察,这将成为未来几年开发者需要具备的一系列重要技能。根据Kenneth Research的预测,到2023年底全球边缘计算市场规模预计将增长到89.6亿美元,然而当今大多数开发者都不具备满足这一需求的能力。
OpenVINO工具箱基于卷积神经网络,让开发者能够在一系列英特尔架构中实现应用性能的最大化。此外该课程还让开发者可以访问英特尔DevCloud物联网,学生可以在其中开发、测试和运行各种英特尔芯片的应用。
英特尔表示,该课程的费用为1077美元,大约需要三个月的时间完成,其中需要完成三个实际项目,这些项目将由Udacity查阅者网络进行审阅。
英特尔副总裁、物联网集团总经理Jonathan Ballon表示:“优化直接在边缘设备上的部署,需要了解各种约束条件,例如功率、网络带宽和延迟、各种计算架构等等。该课程提供的技能将使开发者和企业能够学习在现实环境中实施应用。”
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。