英特尔今天宣布与在线教育课程提供商Udacity展开合作,推出面向有兴趣在网络边缘部署人工智能模型的开发者的新课程。
边缘计算是指计算是运行在设备本身而不是在云中的,这样可以更快地处理数据,消除了将数据传输到云服务器的安全风险,降低了数据传输成本,以及带宽中断影响性能的风险。
今天公布的这项计划名为Intel Edge AI for IoT Developers Nanodegree,其目标是让开发者熟悉英特尔的OpenVINO工具包,该工具包用于在便于部署预训练的深度学习模型,使用C ++或者Python推理引擎应用API。
英特尔认为,随着医疗、制造和零售等行业越来越多地在边缘部署AI来收集更准确的实时洞察,这将成为未来几年开发者需要具备的一系列重要技能。根据Kenneth Research的预测,到2023年底全球边缘计算市场规模预计将增长到89.6亿美元,然而当今大多数开发者都不具备满足这一需求的能力。
OpenVINO工具箱基于卷积神经网络,让开发者能够在一系列英特尔架构中实现应用性能的最大化。此外该课程还让开发者可以访问英特尔DevCloud物联网,学生可以在其中开发、测试和运行各种英特尔芯片的应用。
英特尔表示,该课程的费用为1077美元,大约需要三个月的时间完成,其中需要完成三个实际项目,这些项目将由Udacity查阅者网络进行审阅。
英特尔副总裁、物联网集团总经理Jonathan Ballon表示:“优化直接在边缘设备上的部署,需要了解各种约束条件,例如功率、网络带宽和延迟、各种计算架构等等。该课程提供的技能将使开发者和企业能够学习在现实环境中实施应用。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
哈佛大学研究团队开发出LangSplatV2系统,实现了超高速3D语言查询功能。该系统通过创新的稀疏编码技术和高效渲染算法,将3D场景语言理解速度提升了47倍,达到每秒384帧的实时处理能力。系统采用全局语义字典和稀疏系数表示,彻底解决了传统方法中解码器速度瓶颈问题,为AR/VR、智能机器人等应用提供了强大的技术基础。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
马里兰大学研究团队提出了CoLa(Chain-of-Layers)方法,让AI模型能够根据任务难度动态调整内部层的使用策略,实现"快思考"和"慢思考"的灵活切换。通过蒙特卡洛树搜索算法,该方法在推理任务上显著提升了模型的准确性和效率,为75%的正确答案找到了更短的处理路径,并纠正了60%的错误答案,为AI模型的架构优化开辟了新方向。