公司已经发明了一种自旋量子位制造流程,基于300毫米工艺技术,使用的是这种同位素纯晶圆(硅晶圆)。(图片来源:Walden Kirsch/英特尔公司)
2020年4月15日——今天,英特尔与QuTech共同在《自然》杂志(Nature)上发表了一篇论文,证明了在高于1开氏度下,能够成功控制“高温”量子位(量子计算的基本单位)。该研究还重点论述了对两个量子位的单独相干控制,其单量子位保真度高达99.3%。这些突破突显出对未来量子系统和硅自旋量子位进行低温控制的潜力,硅自旋量子位与单电子晶体管极为相似,可以集成在一个封装内。
英特尔研究院量子硬件总监Jim Clarke表示:“这项研究代表我们对硅自旋量子位的研究取得了意义非凡的进展,我们认为硅自旋量子位是一个极具潜力的候选技术,有望赋能商业规模级量子系统,因为它们非常类似于英特尔已制造超过50年之久的晶体管。我们证明高温量子可以在更高的温度下工作,同时保持高保真度,这为在不会影响量子位性能的情况下,实现各种本地量子位控制选项铺平了道路。”
能否将量子计算应用于实际问题中,取决于同时以高保真度扩展和控制数千个(甚至是数百万个)量子位的能力。然而,当前的量子系统设计受限于整体系统尺寸、量子位保真度,尤其是大规模管理量子所需的控制电子器件的复杂程度。
在一个芯片上集成控制电子器件和自旋量子位,可以大大简化两者之间的互连。但是要实现这一目标,提高量子位的工作温度至关重要。在此之前,量子计算机被证明只能在毫开尔文的温度范围内工作——只比绝对零度高出零点几度。现在,随着对高温量子的研究,QuTech与英特尔的合作已经证明了一个假设,即硅自旋量子位有可能在略高于当前量子系统运行温度中工作,从而向量子计算的可扩展性迈出了一步。
利用硅自旋量子推进量子计算,让英特尔能够利用在先进封装和互连技术方面的专业性,为实现量子实用性开辟一条可扩展的道路。英特尔持续推进全栈量子系统的发展,这项研究正是建立在此前的一系列工作之上,包括去年年底推出的首款Horse Ridge低温量子控制芯片。
这一研究也实现了关键性能突破。一般来说,除非将量子位冷却到接近绝对零度(-273摄氏度,或0开氏度),否则量子位中存储的量子信息通常很快就会丢失。在《自然》杂志重点报道的研究中,英特尔和QuTech首次展现了如何运行较高温度、较大密度且相干的量子位。这些密集的量子位能够在相对较高的温度下高质量运行。
随着这项研究的开展,研究人员同时证明,1开氏度以上温度可以实现硅量子点的单量子位控制。但是直到此前,只有在40毫开氏度的低温下,才能实现对两个量子位的控制。英特尔与QuTech的合作研究展现了新的突破,在1.1开氏度下,可以运行量子电路中的完整双量子位逻辑单元。
通过这项研究,英特尔和QuTech还证明了能够控制双量子位系统电子自旋的能力,并测量出单量子位保真度高达99.3%,且可对系统进行精确调整。此外,研究团队还证明在45毫开氏度到1.25开氏度的温度范围内,自旋量子位的性能受影响最小。
好文章,需要你的鼓励
研究显示,英国中小企业虽占企业总数99.9%,但因资源与专业不足,难以有效应对网络攻击。CyCOS项目旨在通过构建支持社区,帮助中小企业提升网络防御能力。
这项研究介绍了EOC-Bench,一个创新基准测试,专门评估多模态大语言模型在第一人称视角场景中对物体的认知能力。研究团队从三个时间维度(过去、现在和未来)构建了3,277个问答对,涵盖11个细粒度评估维度,创新性地使用视觉提示解决物体引用问题。评估结果显示,即使最先进的模型如GPT-4o在物体时间感知方面也显著落后于人类,特别是在绝对时间感知上。这一研究为发展更强大的体感AI系统提供了重要参考,对增强现实和机器人技术等领域具有深远影响。
Wispr 的 Flow 是一款创新的 iOS 语音输入软件,借助 AI 技术能将语音无缝转换为精美文字,每周免费 2000 字,支持 100 多种语言,并能实现多设备同步。
这篇论文由加州大学伯克利分校和香港大学的研究团队提出了LIFT方法,挑战了传统视觉语言模型需要同时训练文本和图像编码器的假设。研究发现,使用预训练的大型语言模型作为固定文本编码器,只训练图像编码器就能在多项任务上超越CLIP,特别是在理解空间位置、对象属性关联等组合信息方面。LIFT不仅提高了计算效率,还解决了CLIP在处理复杂语义关系和长文本描述时的短板,为视觉语言模型提供了一条更高效的发展路径。