开发者可在保护其数据隐私的同时,通过NVIDIA先进学习工具使用跨多个数据集的深度神经网络
中国苏州——GTC China——2019年12月18日 ——NVIDIA今日宣布,在NVIDIA GPU Cloud(NGC)容器注册上,向交通运输行业开源NVIDIA DRIVE自动驾驶汽车开发深度神经网络。
NVIDIA DRIVE已成为自动驾驶汽车开发的行业标准,并且被汽车制造商、卡车制造商、自动驾驶出租车公司、软件公司和大学所广泛采用。如今,NVIDIA向自动驾驶汽车开发者开源其预训练AI模型和训练代码。通过一套NVIDIA AI工具,NVIDIA生态系统内的开发者们可以自由扩展和自定义模型,从而提高其自动驾驶系统的稳健性与能力。
NVIDIA创始人兼首席执行官黄仁勋表示:“AI自动驾驶汽车是软件定义的汽车,它必须基于大量数据集才能在全球范围行驶。我们向自动驾驶汽车开发者开源我们的深度神经网络,并为他们提供先进学习工具,使他们能够根据不同的数据集对这些网络进行优化。通过这一方式,我们正在实现跨企业和国家/地区的共享学习,并保护数据所有权和隐私,最终加快全球自动驾驶汽车的落地。”
AI对于安全的自动驾驶汽车开发来说至关重要,它能够让其感知周围环境并做出实时反应,从而实现智能行驶。其核心是由数十个深度神经网络组成的,它们可以处理冗余和不同任务,以确保精确的感知、定位和路径规划。
HIS Markit人工智能高级研究总监Luca De Ambroggi表示:“NVIDIA为交通运输行业开发最深入广泛的深度神经网络和AI工具,并且是这一领域的全球领导者。为开发者们提供这些算法,以及用于自定义这些算法的工具和工作流程基础架构,将助力安全的自动驾驶交通运输解决方案落地。”
NVIDIA多年深耕于开发和训练可在NVIDIA DRIVE AGX平台上运行的深度神经网络,它们能够将原始传感器数据转换成对世界的深度理解。这些深度神经网络能够实现交通信号灯和交通标识检测、目标检测(车辆、行人、自行车)、路径感知以及车载眼球追踪和手势识别等任务。
用于AI开发的先进学习工具:
除了开源深度神经网络之外,NVIDIA还发布了一套先进工具,使开发者可以使用自己的数据集和目标特征集自定义并增强NVIDIA的深度神经网络。这套工具使用主动学习、联邦学习和迁移学习来训练深度神经网络。
主动学习借助AI而不是人工管理实现自动数据选择,进而提高模型精度,降低数据采集成本。
联邦学习使企业能够与其他企业一起使用分布在不同国家的多个数据集,同时保护数据隐私和企业的知识产权。
借助NVIDIA在自动驾驶汽车开发领域的大力投入,迁移学习使NVIDIA DRIVE客户能够加快开发其感知软件,然后基于他们自己的应用和目标能力进一步开发这些网络。
通过在NGC上开源AI模型和推出先进训练工具,NVIDIA强化了其端对端自动驾驶汽车的开发和部署平台。
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
大模型时代,玛丽·米克尔(Mary Meeker)的名字可能大家不一定熟悉,但是在互联网时代,这位被可被誉为“互联网女皇”的。她是美国风险投资家和前华尔街证券分析师,专注于互联网及新兴技术领域。玛丽·米克尔(Mary Meeker)发了一份340页的《人工智能趋势报告》,粗粗看了一下,并没有非常轰动的观点,但是数据比较全面
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。