全新Microsoft Azure NDv2超大型实例可扩展至数百个互联的NVIDIA Tensor Core GPU,满足复杂的AI和高性能计算应用需求
NVIDIA于今日发布在Microsoft Azure云上的一种新型GPU加速超级计算机。
此次发布的全新NDv2实例是Azure上规模最大的一次部署,该产品专为处理要求苛刻的AI和高性能计算应用而设计,是全球速度最快的超级计算机之一。它能在一个Mellanox InfiniBand后端网络上提供多达800个互联的NVIDIA V100 Tensor Core GPU。这是首次用户可以根据需求,在自己的桌面上租用整台AI超级计算机,而且其性能与那些需要数个月时间才能完成部署的大型本地超级计算机相匹配。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“此前,只有一些全球性的大型企业和机构才能使用超级计算机进行AI和高性能计算。而这款在Microsoft Azure上推出的新产品实现了AI的大众化,使更多人能够获得基础工具,来解决一些全球最大的挑战。”
微软Azure Compute企业副总裁Girish Bablani补充说:“由于云计算在全球各地呈现增长趋势,客户正在寻求更高性能的服务。此次微软与NVIDIA的合作,能够让用户即时获取超级计算能力,这在以前是无法想象的。可以说,我们开创了一个创新的新时代。”
这款新产品十分适用于复杂的AI、机器学习和高性能计算工作负载。相比基于CPU的传统计算,它具有显著的性能和成本优势。对于需要快速解决方案的AI研究人员来说,它可以快速启动多个NDv2实例,并在短短几小时内完成复杂的会话式AI模型的训练。
此前,微软和NVIDIA的工程师已在该集群的预览版本上使用64个NDv2实例进行了实验。他们用了约三小时完成了BERT会话式AI模型的训练。能够实现这一速度的原因之一是使用了NCCL(一款NVIDIA CUDA X库)提供的多GPU优化以及高速Mellanox互联解决方案。
另一个优点是客户可以使用多个NDv2实例运行复杂的高性能计算工作负载,比如LAMMPS,这是一种流行的分子动力学应用程序,用于在药物开发和探索等领域中模拟原子级物质。相比于一个专用于特定应用程序(如深度学习)的、未使用GPU的 HPC计算节点,单个NDv2实例就能实现高达一个数量级的速度提升。如果需要进行大规模的模拟,还可以将这一性能线性扩展至一百个实例。
所有NDv2实例都能够受益于NVIDIA NGC容器注册表和Azure Marketplace中所提供的TensorFlow、PyTorch和MXNet等GPU优化高性能计算应用、机器学习软件及深度学习框架。该注册表还提供Helm图表,让用户在Kubernetes集群上可以轻松地部署AI软件。
NDv2目前已推出预览版本。一个实例中包含8个NVIDIA V100 GPU,可组成集群,根据不同的工作负载需求进行扩展。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
华为诺亚实验室联合多家顶尖院校推出开源机器人编程框架Ark,通过Python优先设计和模块化架构,实现仿真与现实环境的无缝切换。该框架大幅降低机器人编程门槛,支持现代AI技术集成,为机器人学习研究提供统一平台,有望加速机器人技术普及。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
网易有道研究团队开发了Confucius3-Math,这是一个专门针对中国K-12数学教育的14B参数AI模型。该模型在多项数学推理测试中表现出色,超越了许多规模更大的竞争对手,训练成本仅需2.6万美元,推理速度比DeepSeek-R1快15倍,能在消费级GPU上高效运行,旨在通过降低AI教育成本来促进教育公平。