与Arm、Ampere、Cray、富士通、HPE、Marvell携手构建GPU加速服务器,以满足从超大规模云到边缘、从模拟到AI、从高性能存储到百万兆级超级计算等多样化需求
NVIDIA于今日发布一款参考设计平台,使企业能够快速构建GPU加速的Arm服务器,以满足日益多样化的科学和工业应用需求。这开辟了高性能计算的新纪元。
NVIDIA创始人兼首席执行官黄仁勋在2019国际超级计算大会(SC19)上宣布推出这款参考设计平台。该平台由硬件和软件基础模块组成,能够满足高性能计算(HPC)社区对于类型更加多样化的CPU架构日益增长的需求。通过该平台,超级计算中心、超大型云运营商和企业能够将NVIDIA加速计算平台的优势与最新的Arm服务器平台相结合。
为了构建这一参考平台,NVIDIA与Arm及其生态合作伙伴(包括Ampere、富士通和Marvell)联手,以确保NVIDIA GPU与Arm处理器之间的无缝协作。该参考平台还得益于与HPE旗下公司Cray和HPE这两家早期采用Arm服务器的供应商之间的紧密合作。此外,许多高性能计算软件公司已使用NVIDIA CUDA-X库来构建可在Arm服务器上运行、并可通过GPU实现的管理和监控工具。
黄仁勋表示:“高性能计算正在崛起。机器学习和AI领域的突破正在重新定义科学研究方法,并且可能带来激动人心的新架构。从超大规模云到百万兆级超级计算,NVIDIA GPU与ARM的组合让创新者们能够为不断增加的新应用创建系统。”
Arm IP产品部门总裁Rene Haas表示:“ Arm正在与生态合作伙伴一同努力,为百万兆级的Arm系统级芯片提供前所未有的性能和效率。我们与NVIDIA合作,将CUDA加速带入到Arm架构当中,这对于高性能计算社区来说,具有里程碑式的意义。为了应对全球最复杂的研究,挑战并推动嵌入式系统、汽车和边缘细分市场的进一步发展,高性能计算社区已经在部署Arm技术。”
今年早些时候,NVIDIA宣布为Arm带来CUDA-X软件平台。NVIDIA此次发布这一参考平台正是对此前承诺的兑现。根据这一承诺,NVIDIA正在提供其Arm兼容软件开发套件的预览版本。该版本包含NVIDIA CUDA-X库和加速计算开发工具。
除了使自己的软件兼容Arm之外,NVIDIA还与 GROMACS、LAMMPS、MILC、NAMD、Quantum Espresso和Relion等领先的高性能计算应用开发商密切合作,为ARM提供GPU加速的应程序用。为了让Arm平台上的应用实现GPU加速,NVIDIA及其高性能计算应用生态合作伙伴编译了大量代码。
为了构建Arm生态,NVIDIA与领先的Linux发行商Canonical、Red Hat、SUSE,以及业内领先的高性能计算基础工具供应商展开合作。
几家世界级的超级计算中心已开始测试GPU加速Arm计算系统,其中包括美国的橡树岭国家实验室和桑迪亚国家实验室、英国布里斯托大学以及日本理化学研究所。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。