与Arm、Ampere、Cray、富士通、HPE、Marvell携手构建GPU加速服务器,以满足从超大规模云到边缘、从模拟到AI、从高性能存储到百万兆级超级计算等多样化需求
NVIDIA于今日发布一款参考设计平台,使企业能够快速构建GPU加速的Arm服务器,以满足日益多样化的科学和工业应用需求。这开辟了高性能计算的新纪元。
NVIDIA创始人兼首席执行官黄仁勋在2019国际超级计算大会(SC19)上宣布推出这款参考设计平台。该平台由硬件和软件基础模块组成,能够满足高性能计算(HPC)社区对于类型更加多样化的CPU架构日益增长的需求。通过该平台,超级计算中心、超大型云运营商和企业能够将NVIDIA加速计算平台的优势与最新的Arm服务器平台相结合。
为了构建这一参考平台,NVIDIA与Arm及其生态合作伙伴(包括Ampere、富士通和Marvell)联手,以确保NVIDIA GPU与Arm处理器之间的无缝协作。该参考平台还得益于与HPE旗下公司Cray和HPE这两家早期采用Arm服务器的供应商之间的紧密合作。此外,许多高性能计算软件公司已使用NVIDIA CUDA-X库来构建可在Arm服务器上运行、并可通过GPU实现的管理和监控工具。
黄仁勋表示:“高性能计算正在崛起。机器学习和AI领域的突破正在重新定义科学研究方法,并且可能带来激动人心的新架构。从超大规模云到百万兆级超级计算,NVIDIA GPU与ARM的组合让创新者们能够为不断增加的新应用创建系统。”
Arm IP产品部门总裁Rene Haas表示:“ Arm正在与生态合作伙伴一同努力,为百万兆级的Arm系统级芯片提供前所未有的性能和效率。我们与NVIDIA合作,将CUDA加速带入到Arm架构当中,这对于高性能计算社区来说,具有里程碑式的意义。为了应对全球最复杂的研究,挑战并推动嵌入式系统、汽车和边缘细分市场的进一步发展,高性能计算社区已经在部署Arm技术。”
今年早些时候,NVIDIA宣布为Arm带来CUDA-X软件平台。NVIDIA此次发布这一参考平台正是对此前承诺的兑现。根据这一承诺,NVIDIA正在提供其Arm兼容软件开发套件的预览版本。该版本包含NVIDIA CUDA-X库和加速计算开发工具。
除了使自己的软件兼容Arm之外,NVIDIA还与 GROMACS、LAMMPS、MILC、NAMD、Quantum Espresso和Relion等领先的高性能计算应用开发商密切合作,为ARM提供GPU加速的应程序用。为了让Arm平台上的应用实现GPU加速,NVIDIA及其高性能计算应用生态合作伙伴编译了大量代码。
为了构建Arm生态,NVIDIA与领先的Linux发行商Canonical、Red Hat、SUSE,以及业内领先的高性能计算基础工具供应商展开合作。
几家世界级的超级计算中心已开始测试GPU加速Arm计算系统,其中包括美国的橡树岭国家实验室和桑迪亚国家实验室、英国布里斯托大学以及日本理化学研究所。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。