GPU制造商Nvidia今天宣布了三项超级计算机相关创新,旨在扩展设计以便在更多数据中心内支持人工智能工作负载。
特别是Nvidia引入了基于Arm的服务器参考架构、可扩展的微软Azure云可访问超级计算机、面向数据科学家和人工智能的Magnum IO软件套件。Nvidia的GPU已经成为人工智能的首选处理器,因为Nvidia的GPU提供了支持图形和游戏的高度并行处理,被证明是机器学习的理想选择。
Nvidia首席执行官黄仁勋今天在SC19超级计算大会上发布了基于Arm的服务器架构参考平台。这个由硬件和软件构建块组成的参考设计平台,将使高性能计算开发行业能够利用更为广泛的CPU架构。
该平台将使超级计算中心、超大规模云运营商和企业把Nvidia基于CUDA软件的图形计算芯片与最新基于Arm的服务器平台相结合。
黄仁勋表示:“高性能计算领域正在复兴。机器学习和人工智能技术的突破,正在重新定义着各种科学方法,并为新架构提供了机会。将Nvidia GPU带入Arm体系中,将为创新者打开一扇大门,为创建从超大规模云到百亿亿次超级计算乃至更多新应用提供了系统。”
为了构建这个参考平台,Nvidia与Arm及其生态系统合作伙伴(包括Ampere Computing、Fujitsu和Marvell)展开了合作,以及与HPE及其子公司Cray的深度合作。
Nvidia还宣布开始支持微软Azure云NDv2超大型实例,该实例使用多达800个Nvidia Tensor Core GPU,连接到一个Mellanox InfiniBand后端网络上。
Nvidia表示,这让客户第一次可以在办公桌上就能按需租用整个人工智能超级计算机。
Nvidia副总裁兼加速计算总经理Ian Buck表示:“到目前为止,仍然只有全球最大型的企业组织能够使用面向人工智能和高性能计算的超级计算机。这款新产品实现了人工智能大众化,让人们使用一款基本工具就能解决一些最为严峻的挑战。”
这款新产品非常适合人工智能和机器学习工作负载,其性能优势远远超过传统基于CPU的计算。
微软和Nvidia的工程师使用64个NDv2实例在集群的预发布版本上训练BERT(一种流行的自然语言会话AI模型),时间仅仅花费了三个小时,而且一部分是通过Nvidia CUDA核心技术和Mellanox互连实现的。
Magnum IO是一款软件套件,旨在帮助数据科学家、人工智能和高性能计算研究人员能够在数分钟而不是数小时内处理大量的数据。
该软件套件和工具与传统模型相比,当处理海量数据集能够为多服务器、多GPU计算节点提供高达20倍的数据传输速度,因此非常适合进行大规模的复杂财务分析、气候建模和其他高性能计算工作负载。
黄仁勋表示:“处理大量收集来的数据或者模拟数据是像人工智能这样的数据科学的核心。”
Nvidia通过与计算、网络和存储领域的众多行业领导者紧密合作开发了Magnum IO,包括DataDirect Networks、Excelero、IBM、Mellanox和WekaIOLtd。
Magnum IO的核心是GPUDirect,该架构允许数据绕过CPU并使用GPU、存储和网络设备提供的“开放高速公路”来处理数据,发布之初该架构兼容众多采用点对点和远程访问直接内存的通信互连。
黄仁勋表示:“极端计算需要极端的I/O。Magnum IO通过将Nvidia GPU加速——具有革命性的计算基数——引入I/O和存储来实现这一点。现在,人工智能研究人员和数据科学家不用等待漫长的数据处理,可以把精力放在完成自己的工作上。”
最新推出的元素是GPUDirect Storage,它让研究人员可以在访问存储时绕过CPU,快速处理数据文件以进行仿真、分析或可视化。
Nvidia Magnum IO现已上市,但不包含GPUDirect Storage,GPUDirect Storage仅面向某些选定的早期客户,计划于2020年上半年全面上市。
好文章,需要你的鼓励
Microsoft 正在对 Windows 系统崩溃时显示的蓝屏 (BSOD) 进行重新设计。新设计简化了界面,保留了技术信息,旨在提高用户生产力恢复速度。新版 BSOD 移除了表情符号和二维码,但保留了错误代码和失败进程信息。这一变更反映了 Microsoft 对提升用户体验的持续关注。
CarMax 作为美国最大的二手车零售商,年收入超过 265 亿美元。在 Shamim Mohammad 的领导下,公司成功实现了数字化转型,成为汽车行业的领先者。通过建立强大的技术基础、优化数据策略、应用人工智能技术,以及采用产品运营模式,CarMax 正在重塑汽车零售的未来。Mohammad 的前瞻性领导力和对创新的不懈追求,使 CarMax 在数字化时代保持竞争优势。
数据中心对我们的数字生活至关重要,但也给环境带来负担。为应对生态挑战,数据中心正向可持续、可再生能源、高效技术和可回收材料转型。这一转变不仅符合日益严格的环保法规,还能为企业带来竞争优势。从"白色空间"到"绿色建筑"的转型,将提高运营效率,降低成本,减少碳排放,为行业树立可持续发展的典范。
Nvidia最近改变了GPU的定义方式,将单个芯片die视为一个GPU,而非之前的整个模块。这一变化可能导致Nvidia AI Enterprise许可证费用翻倍。新的HGX B300 NVL16系统现在被视为拥有16个GPU,而非8个,这可能使年度订阅费用从36,000美元增至72,000美元。Nvidia表示,这一改变源于技术原因,但也可能是为了增加软件订阅收入。