Nvidia正在公有云上实现人工智能和机器学习,发布了运行在VMware on AWS Cloud上的“加速GPU服务”。
这项新服务是今天在VMworld 2019大会上宣布推出的,可以轻松地将现有基于vSphere的应用和软件容器迁移到VMware on AWS Cloud上,后者是一种混合云平台,可以在AWS的公有云上运行VMware的软件定义数据中心堆栈。
这些应用一旦被重新部署,就可以通过Nvidia的高性能GPU利用包括高性能计算、机器学习、数据分析和视频处理应用等新技术。
Nvidia认为,人工智能工作负载(如图像和语音识别、财务建模和自然语言处理)最好在是在自己的GPU硬件上完成的,因为与传统的CPU相比,GPU大大加快了训练和推理时间。
这项新服务采用Amazon的EC2裸机实例和Nvidia新的Virtual Compute Server软件,并将这些与Nvidia T4 GPU相结合以加速人工智能工作负载。
Nvidia创始人兼首席执行官黄仁勋表示:“从运营智能再到人工智能,企业依靠GPU加速计算以做出给他们带来直接影响的、快速准确的预测。我们与VMware一起,正在设计最先进、性能最高的GPU加速混合云基础设施,以促进整个企业的创新。”
Nvidia表示,在VMware on AWS Cloud上运行人工智能工作负载的最大好处之一就是他们能够利用Amazon基础设施的“弹性”。这项新服务将使客户能够根据需要扩展人工智能工作负载,根据数据科学家的需求扩大和缩小他们的训练环境。
其他好处包括提高人工智能应用的安全性和可管理性,更不用说还可以提高可移动性。Nvidia表示,客户只需点击一下按钮就可以在VMware on AWS Cloud和本地环境之间迁移应用,无需停机。
市场研究公司Wikibon分析师James Kobielus表示,Nvidia与VMware的合作意味着VMware现在可以为客户提供高性能的人工智能计算基础设施,这是以前无法做到的。
“通过这种合作伙伴关系,VMware客户可以轻松地将在裸机CPU上运行的人工智能工作负载转移到运行在VMware on AWS Cloud上Nvidia最新最快的GPU虚拟化集群,这将使VMware相比其他混合云解决方案提供商(例如IBM和HPE)在运行企业客户最先进人工智能应用方面占据了优势。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。