Nvidia正在公有云上实现人工智能和机器学习,发布了运行在VMware on AWS Cloud上的“加速GPU服务”。
这项新服务是今天在VMworld 2019大会上宣布推出的,可以轻松地将现有基于vSphere的应用和软件容器迁移到VMware on AWS Cloud上,后者是一种混合云平台,可以在AWS的公有云上运行VMware的软件定义数据中心堆栈。
这些应用一旦被重新部署,就可以通过Nvidia的高性能GPU利用包括高性能计算、机器学习、数据分析和视频处理应用等新技术。
Nvidia认为,人工智能工作负载(如图像和语音识别、财务建模和自然语言处理)最好在是在自己的GPU硬件上完成的,因为与传统的CPU相比,GPU大大加快了训练和推理时间。
这项新服务采用Amazon的EC2裸机实例和Nvidia新的Virtual Compute Server软件,并将这些与Nvidia T4 GPU相结合以加速人工智能工作负载。
Nvidia创始人兼首席执行官黄仁勋表示:“从运营智能再到人工智能,企业依靠GPU加速计算以做出给他们带来直接影响的、快速准确的预测。我们与VMware一起,正在设计最先进、性能最高的GPU加速混合云基础设施,以促进整个企业的创新。”
Nvidia表示,在VMware on AWS Cloud上运行人工智能工作负载的最大好处之一就是他们能够利用Amazon基础设施的“弹性”。这项新服务将使客户能够根据需要扩展人工智能工作负载,根据数据科学家的需求扩大和缩小他们的训练环境。
其他好处包括提高人工智能应用的安全性和可管理性,更不用说还可以提高可移动性。Nvidia表示,客户只需点击一下按钮就可以在VMware on AWS Cloud和本地环境之间迁移应用,无需停机。
市场研究公司Wikibon分析师James Kobielus表示,Nvidia与VMware的合作意味着VMware现在可以为客户提供高性能的人工智能计算基础设施,这是以前无法做到的。
“通过这种合作伙伴关系,VMware客户可以轻松地将在裸机CPU上运行的人工智能工作负载转移到运行在VMware on AWS Cloud上Nvidia最新最快的GPU虚拟化集群,这将使VMware相比其他混合云解决方案提供商(例如IBM和HPE)在运行企业客户最先进人工智能应用方面占据了优势。”
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。