Nvidia正在公有云上实现人工智能和机器学习,发布了运行在VMware on AWS Cloud上的“加速GPU服务”。
这项新服务是今天在VMworld 2019大会上宣布推出的,可以轻松地将现有基于vSphere的应用和软件容器迁移到VMware on AWS Cloud上,后者是一种混合云平台,可以在AWS的公有云上运行VMware的软件定义数据中心堆栈。
这些应用一旦被重新部署,就可以通过Nvidia的高性能GPU利用包括高性能计算、机器学习、数据分析和视频处理应用等新技术。
Nvidia认为,人工智能工作负载(如图像和语音识别、财务建模和自然语言处理)最好在是在自己的GPU硬件上完成的,因为与传统的CPU相比,GPU大大加快了训练和推理时间。
这项新服务采用Amazon的EC2裸机实例和Nvidia新的Virtual Compute Server软件,并将这些与Nvidia T4 GPU相结合以加速人工智能工作负载。
Nvidia创始人兼首席执行官黄仁勋表示:“从运营智能再到人工智能,企业依靠GPU加速计算以做出给他们带来直接影响的、快速准确的预测。我们与VMware一起,正在设计最先进、性能最高的GPU加速混合云基础设施,以促进整个企业的创新。”
Nvidia表示,在VMware on AWS Cloud上运行人工智能工作负载的最大好处之一就是他们能够利用Amazon基础设施的“弹性”。这项新服务将使客户能够根据需要扩展人工智能工作负载,根据数据科学家的需求扩大和缩小他们的训练环境。
其他好处包括提高人工智能应用的安全性和可管理性,更不用说还可以提高可移动性。Nvidia表示,客户只需点击一下按钮就可以在VMware on AWS Cloud和本地环境之间迁移应用,无需停机。
市场研究公司Wikibon分析师James Kobielus表示,Nvidia与VMware的合作意味着VMware现在可以为客户提供高性能的人工智能计算基础设施,这是以前无法做到的。
“通过这种合作伙伴关系,VMware客户可以轻松地将在裸机CPU上运行的人工智能工作负载转移到运行在VMware on AWS Cloud上Nvidia最新最快的GPU虚拟化集群,这将使VMware相比其他混合云解决方案提供商(例如IBM和HPE)在运行企业客户最先进人工智能应用方面占据了优势。”
好文章,需要你的鼓励
清华大学团队突破性开发"零样本量化"技术,让AI模型在不接触真实数据的情况下完成高效压缩,性能反超传统方法1.7%,为隐私保护时代的AI部署开辟新路径。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。