Nvidia正在公有云上实现人工智能和机器学习,发布了运行在VMware on AWS Cloud上的“加速GPU服务”。
这项新服务是今天在VMworld 2019大会上宣布推出的,可以轻松地将现有基于vSphere的应用和软件容器迁移到VMware on AWS Cloud上,后者是一种混合云平台,可以在AWS的公有云上运行VMware的软件定义数据中心堆栈。
这些应用一旦被重新部署,就可以通过Nvidia的高性能GPU利用包括高性能计算、机器学习、数据分析和视频处理应用等新技术。
Nvidia认为,人工智能工作负载(如图像和语音识别、财务建模和自然语言处理)最好在是在自己的GPU硬件上完成的,因为与传统的CPU相比,GPU大大加快了训练和推理时间。
这项新服务采用Amazon的EC2裸机实例和Nvidia新的Virtual Compute Server软件,并将这些与Nvidia T4 GPU相结合以加速人工智能工作负载。
Nvidia创始人兼首席执行官黄仁勋表示:“从运营智能再到人工智能,企业依靠GPU加速计算以做出给他们带来直接影响的、快速准确的预测。我们与VMware一起,正在设计最先进、性能最高的GPU加速混合云基础设施,以促进整个企业的创新。”
Nvidia表示,在VMware on AWS Cloud上运行人工智能工作负载的最大好处之一就是他们能够利用Amazon基础设施的“弹性”。这项新服务将使客户能够根据需要扩展人工智能工作负载,根据数据科学家的需求扩大和缩小他们的训练环境。
其他好处包括提高人工智能应用的安全性和可管理性,更不用说还可以提高可移动性。Nvidia表示,客户只需点击一下按钮就可以在VMware on AWS Cloud和本地环境之间迁移应用,无需停机。
市场研究公司Wikibon分析师James Kobielus表示,Nvidia与VMware的合作意味着VMware现在可以为客户提供高性能的人工智能计算基础设施,这是以前无法做到的。
“通过这种合作伙伴关系,VMware客户可以轻松地将在裸机CPU上运行的人工智能工作负载转移到运行在VMware on AWS Cloud上Nvidia最新最快的GPU虚拟化集群,这将使VMware相比其他混合云解决方案提供商(例如IBM和HPE)在运行企业客户最先进人工智能应用方面占据了优势。”
好文章,需要你的鼓励
今年是AI智能体的爆发年。聊天机器人正演进为能代表用户执行任务的自主智能体,企业持续投资智能体平台。调研显示,超半数高管表示其组织已在使用AI智能体,88%在智能体上投入过半AI预算的公司已从至少一个用例中获得投资回报。Gartner预测,到2026年40%的企业软件应用将包含智能体AI,2035年智能体AI可能驱动约30%的企业应用软件收入。企业开始将AI智能体视为员工,建立招聘培训体系。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
谷歌的Nano Banana Pro AI模型生成的图像逼真度令人震惊,其关键在于完美模拟了手机相机的拍照特征。这些AI生成的图像具备手机拍照的典型特点:明亮平坦的曝光、较大的景深范围、略显粗糙的细节处理,甚至包含噪点。该模型还能自动添加符合情境的细节元素,如房产照片的水印等,使图像更加真实可信。这种技术进步意味着辨别AI生成内容变得更加困难。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。