AMD今天宣布推出用于数据中心的第二代EPYC处理芯片,并公布了包括谷歌和推特在内的知名大客户。
AMD的第二代AMD EPYC处理器采用合约制造商的新技术制造,可提供更好的性能,同时功耗低于上一代芯片。EPYC芯片采用最先进的7纳米工艺制造,具有多达64个“Zen 2”核心,这一点使其实现了创纪录的性能,同时在运行很多数据中心工作负载方面总拥有成本降低多达50%。
AMD总裁兼首席执行官Lisa Su在发布会主题演讲中表示:“今天,我们为现代数据中心设立了新的标准,多家企业、云和高性能计算新客户选择EPYC处理器来满足他们最苛刻的服务器计算需求,从而加速了我们领先服务器处理器的普及速度。”
在这次发布会上,AMD高管花了大量时间讨论第二代EPYC芯片的性能改进。例如他们声称EPYC芯片在Java应用工作负载方面的性能提高了83%,还强调了该芯片的“创纪录虚拟化性能”和在高性能计算工作负载中实现“创纪录的浮点性能”。
AMD方面补充说,EPYC在服务器工作负载每个核心每个时钟执行的指令增加了23%,而L3缓存多达上一代的4倍。
Moor Insights&Strategy分析师Patrick Moorhead表示,这款新芯片的推出对于AMD来说是一大进步,远远超出他的预期。
“AMD改进了第一代的大部分缺点,如单线程性能和核心扩展,并增加了新的RAS和安全功能,以及提升了多核心性能,”Moorhead说。
AMD在数据中心芯片领域的主要竞争对手是英特尔,近年来,两家厂商都越来越重视这些主要用于支持互联网服务的芯片,因为PC销售量一直在下滑。
Moorhead表示,他期待AMD在发布上一代芯片之后取得了一些收益之后,能够通过推出第二代EPYC芯片在与英特尔的竞争中取得优势。
他说:“AMD推出第一代EPYC的时候份额只有个位数的小幅增长,不过我预计AMD通过推出第二代EPYC能够在云服务提供商、企业和高性能计算领域获得拿下一些份额。企业不会大规模部署任何第一代产品。他们没有部署第一代EPYC,但他们将部署第二代EPYC。”
AMD可以充分利用这样一个事实:那就是英特尔是在它自己的工厂生产芯片,而不是依靠承包商,导致7纳米制造工艺落后于时间表,这些芯片预计最早要到2021年才会到货。
这也被认为是AMD能够撬动英特尔一些最大客户(包括谷歌)的原因之一。
谷歌高管出现在AMD的这次发布会上,表示谷歌已经部署了AMD的第二代EPYC处理器,用于处理部分云数据中心的特定工作负载。今年晚些时候,谷歌还将采用这款芯片来支持针对Google Cloud Compute Engine服务的“通用型”设备。
“谷歌是个有意思的客户,已经明确表示如果能够看到更好的性能和价格就会有更大投入。谷歌曾经是AMD Opteron的最大客户。对此我会密切关注。”
推特(Twitter)也成为AMD的一大客户。这家社交媒体公司表示。将在今年晚些时候在其数据中心内部署AMD EPYC芯片,预计这将使总体拥有成本降低25%。
微软也宣布推出了针对基于EPYC芯片的通用设备的新Azure虚拟机预览。此外,微软还还宣布了云远程桌面和基于新架构高性能计算工作负载的有限预览。
数据中心硬件厂商HPE和联想也宣布推出基于EPYC芯片的新平台,包括HPE ProLiant DL385和ProLiant DL325服务器,以及联想的ThinkSystem SR655和SR635服务器。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。