计算机图形芯片制造商Nvidia正在为新型超级计算机铺平道路,宣布其人工智能和高性能计算基础设施将很快支持基于Arm的CPU。
Nvidia今天早些时候表示,自己的CUDA-X AI和HPC库、GPU加速AI框架和软件开发工具将在今年年底前支持基于Arm的设备。这是重要一步,因为基于Arm的超级计算机由于具有更高功效而能够支持更大的规模。
Nvidia首席执行官黄仁勋表示:“随着传统计算扩展的结束,电力将成为限制所有超级计算机的一个因素。Nvidia的CUDA加速计算和Arm高能效CPU架构相结合,将为高性能计算领域提供一个提升突破百亿亿级性能的机会。”
Nvidia加速计算总经理兼副总裁在新闻发布会上表示,之所以决定支持基于Arm的CPU是因为他们对这个领域有着广泛而越来越浓厚的兴趣。”
“Arm吸引人之处在于它是非常开放的,它提供的灵活性可以连接CPU和GPU,实现更高能效的计算。”
由于Nvidia的寄出设施支持x86和基于POWER的计算机芯片,因此全球25个最节能的超级计算机中已经有22个采用了Nvidia的基础设施。Nvidia希望凭借对Arm芯片的支持提升自己的高性能计算领域的地位,支持更高级的人工智能工作负载。
Nvidia还希望将超级计算能力扩展到特定用途,例如为自动驾驶汽车训练AI系统。
为此,Nvidia在今天推出了所谓号称全球第22快的超级计算机——DGX SuperPOD,以及一个参考架构,面向那些希望将这个超级计算机部署在他们自己数据中心内部或者外部的企业。
Nvidia表示,DGX SuperPOD旨在提供部署大量自动驾驶车辆所需的AI训练基础设施。该系统可以三周之内部署完成,由96个Nvidia旧款DGX-2H超级计算机组成,这些超级计算机采用新的数据中心互连技术(今年早些时候收购Mellanox获得的技术)进行集成。
Nvidia表示,DGX SuperPOD旨在为自动驾驶汽车训练神经网络,使车辆可以了解“道路规则”,并提供每秒9.4 petaflops的性能,这个数字令人惊讶——以至于可以把对主流图像分类ResNet-50 AI算法的训练时间从25天缩短到不到2分钟。
Nvidia人工智能基础设施副总裁Clement Farabet在声明中表示:“要在人工智能领域占据领先地位,就需要在计算基础设施领域占据领先地位。很少有人工智能方面的挑战像训练自动驾驶汽车这样苛刻,需要对神经网络进行数万次的反复训练,以满足极高精确度的要求。”
好文章,需要你的鼓励
脑机接口技术正快速发展,特别是非侵入性方法取得重大突破。通过EEG、fNIRS、MEG等传感技术结合人工智能,实现思维解码、图像重构等功能。聚焦超声波技术能精确调节大脑深层结构,为神经疾病治疗带来新希望。消费级可穿戴设备已能改善睡眠、缓解抑郁。这些技术将重塑人机交互方式,从医疗应用扩展至认知增强领域。
波士顿大学团队发现当今多模态AI存在严重"偏科"问题:面对冲突的文字、视觉、听觉信息时,AI过分依赖文字而忽视真实感官内容。研究团队构建MMA-Bench测试平台,通过创造视听冲突场景暴露了主流AI模型的脆弱性,并提出模态对齐调优方法,将模型准确率从25%提升至80%,为构建更可靠的多模态AI系统提供重要突破。
OpenAI首席执行官山姆·阿尔特曼本周宣布进入"红色警戒"状态,要求员工快速响应来自谷歌和Anthropic的竞争压力。据知情人士透露,OpenAI计划下周发布GPT-5.2更新以应对谷歌Gemini 3的挑战。原计划12月下旬发布的GPT-5.2现已提前至12月9日发布,旨在缩小与谷歌上月发布的领先模型Gemini 3之间的差距。
UC伯克利研究团队发现了一种名为"双重话语"的AI攻击方法,能够通过简单的词汇替换绕过当前所有主流聊天机器人的安全防护。攻击者只需用无害词汇替换危险词汇,就能让AI在不知不觉中提供危险信息。研究揭示了现有AI安全机制的根本缺陷,迫切需要开发新的防护策略来应对这一威胁。