计算机图形芯片制造商Nvidia正在为新型超级计算机铺平道路,宣布其人工智能和高性能计算基础设施将很快支持基于Arm的CPU。
Nvidia今天早些时候表示,自己的CUDA-X AI和HPC库、GPU加速AI框架和软件开发工具将在今年年底前支持基于Arm的设备。这是重要一步,因为基于Arm的超级计算机由于具有更高功效而能够支持更大的规模。
Nvidia首席执行官黄仁勋表示:“随着传统计算扩展的结束,电力将成为限制所有超级计算机的一个因素。Nvidia的CUDA加速计算和Arm高能效CPU架构相结合,将为高性能计算领域提供一个提升突破百亿亿级性能的机会。”
Nvidia加速计算总经理兼副总裁在新闻发布会上表示,之所以决定支持基于Arm的CPU是因为他们对这个领域有着广泛而越来越浓厚的兴趣。”
“Arm吸引人之处在于它是非常开放的,它提供的灵活性可以连接CPU和GPU,实现更高能效的计算。”
由于Nvidia的寄出设施支持x86和基于POWER的计算机芯片,因此全球25个最节能的超级计算机中已经有22个采用了Nvidia的基础设施。Nvidia希望凭借对Arm芯片的支持提升自己的高性能计算领域的地位,支持更高级的人工智能工作负载。
Nvidia还希望将超级计算能力扩展到特定用途,例如为自动驾驶汽车训练AI系统。
为此,Nvidia在今天推出了所谓号称全球第22快的超级计算机——DGX SuperPOD,以及一个参考架构,面向那些希望将这个超级计算机部署在他们自己数据中心内部或者外部的企业。
Nvidia表示,DGX SuperPOD旨在提供部署大量自动驾驶车辆所需的AI训练基础设施。该系统可以三周之内部署完成,由96个Nvidia旧款DGX-2H超级计算机组成,这些超级计算机采用新的数据中心互连技术(今年早些时候收购Mellanox获得的技术)进行集成。
Nvidia表示,DGX SuperPOD旨在为自动驾驶汽车训练神经网络,使车辆可以了解“道路规则”,并提供每秒9.4 petaflops的性能,这个数字令人惊讶——以至于可以把对主流图像分类ResNet-50 AI算法的训练时间从25天缩短到不到2分钟。
Nvidia人工智能基础设施副总裁Clement Farabet在声明中表示:“要在人工智能领域占据领先地位,就需要在计算基础设施领域占据领先地位。很少有人工智能方面的挑战像训练自动驾驶汽车这样苛刻,需要对神经网络进行数万次的反复训练,以满足极高精确度的要求。”
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。