计算机图形芯片制造商Nvidia正在为新型超级计算机铺平道路,宣布其人工智能和高性能计算基础设施将很快支持基于Arm的CPU。
Nvidia今天早些时候表示,自己的CUDA-X AI和HPC库、GPU加速AI框架和软件开发工具将在今年年底前支持基于Arm的设备。这是重要一步,因为基于Arm的超级计算机由于具有更高功效而能够支持更大的规模。
Nvidia首席执行官黄仁勋表示:“随着传统计算扩展的结束,电力将成为限制所有超级计算机的一个因素。Nvidia的CUDA加速计算和Arm高能效CPU架构相结合,将为高性能计算领域提供一个提升突破百亿亿级性能的机会。”
Nvidia加速计算总经理兼副总裁在新闻发布会上表示,之所以决定支持基于Arm的CPU是因为他们对这个领域有着广泛而越来越浓厚的兴趣。”
“Arm吸引人之处在于它是非常开放的,它提供的灵活性可以连接CPU和GPU,实现更高能效的计算。”
由于Nvidia的寄出设施支持x86和基于POWER的计算机芯片,因此全球25个最节能的超级计算机中已经有22个采用了Nvidia的基础设施。Nvidia希望凭借对Arm芯片的支持提升自己的高性能计算领域的地位,支持更高级的人工智能工作负载。
Nvidia还希望将超级计算能力扩展到特定用途,例如为自动驾驶汽车训练AI系统。
为此,Nvidia在今天推出了所谓号称全球第22快的超级计算机——DGX SuperPOD,以及一个参考架构,面向那些希望将这个超级计算机部署在他们自己数据中心内部或者外部的企业。
Nvidia表示,DGX SuperPOD旨在提供部署大量自动驾驶车辆所需的AI训练基础设施。该系统可以三周之内部署完成,由96个Nvidia旧款DGX-2H超级计算机组成,这些超级计算机采用新的数据中心互连技术(今年早些时候收购Mellanox获得的技术)进行集成。
Nvidia表示,DGX SuperPOD旨在为自动驾驶汽车训练神经网络,使车辆可以了解“道路规则”,并提供每秒9.4 petaflops的性能,这个数字令人惊讶——以至于可以把对主流图像分类ResNet-50 AI算法的训练时间从25天缩短到不到2分钟。
Nvidia人工智能基础设施副总裁Clement Farabet在声明中表示:“要在人工智能领域占据领先地位,就需要在计算基础设施领域占据领先地位。很少有人工智能方面的挑战像训练自动驾驶汽车这样苛刻,需要对神经网络进行数万次的反复训练,以满足极高精确度的要求。”
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。