数据科学家如今可在Microsoft Azure使用NVIDIA的数据科学加速库——NVIDIA CUDA-X AI,将机器学习项目加速20倍。
只需点击几下,无论规模大小的企业就都能够实现数据科学加速,以前所未有的速度将海量数据转化为自身的竞争优势。
Microsoft Azure Machine Learning(AML)服务是首个集成RAPIDS的主流云平台,RAPIDS是NVIDIA CUDA-X AI的一个关键组件。通过访问RAPIDS开源库套件,数据科学家就能使用AML服务上的NVIDIA GPU,以前所未有的速度进行预测分析。
AML服务上的RAPIDS能够为企业带来大幅度的性能提升。各行各业的众多企业都在使用机器学习,基于其所拥有的海量数据创建预测性AI模型,其中包括希望更好地管理库存的零售商,希望更明智地进行财务预测的金融机构,以及希望更快地进行疾病检测并降低管理成本的医疗机构。
在AML服务上使用RAPIDS的企业能够将AI模型训练速度提升高达20倍,将训练时间从数天缩短至数小时,或从数小时缩短到数分钟,具体取决于其数据集大小。这也是首次将RAPIDSS原生集成到云端数据科学平台上。
沃尔玛是率先采用RAPIDS的企业之一,借助其提高了预测的准确性。
沃尔玛供应链技术与云高级副总裁Srini Venkatesan表示:“RAPIDS软件有望使我们的重点工程流程实现规模化扩展,让我们能够运行最复杂的机器学习模型,进一步提高预测准确性。我们很高兴Azure Machine Learning服务能够与NVIDIA合作,为数据科学家提供RAPIDS和GPU计算,让我们能够在Azure云端运行RAPIDS。”
AML服务上的RAPIDS以Jupyter Notebook的形式提供,使用AML服务SDK创建资源组、工作区、集群、拥有正确配置的环境、以及可供使用的RAPIDS代码库。提供的模板脚本使用户能够尝试不同的数据大小和GPU数量并设置CPU基线。
微软Azure AI企业公司副总裁Eric Boyd表示: “我们的愿景是为客户提供最佳的技术,帮助他们为其工作带来变革。Azure Machine Learning服务是用于构建和部署机器学习模型的领先平台,我们很高兴能帮助数据科学家通过Azure与NVIDIA GPU加速技术的结合,实现显著的性能提升。”
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。