数据科学家如今可在Microsoft Azure使用NVIDIA的数据科学加速库——NVIDIA CUDA-X AI,将机器学习项目加速20倍。
只需点击几下,无论规模大小的企业就都能够实现数据科学加速,以前所未有的速度将海量数据转化为自身的竞争优势。
Microsoft Azure Machine Learning(AML)服务是首个集成RAPIDS的主流云平台,RAPIDS是NVIDIA CUDA-X AI的一个关键组件。通过访问RAPIDS开源库套件,数据科学家就能使用AML服务上的NVIDIA GPU,以前所未有的速度进行预测分析。
AML服务上的RAPIDS能够为企业带来大幅度的性能提升。各行各业的众多企业都在使用机器学习,基于其所拥有的海量数据创建预测性AI模型,其中包括希望更好地管理库存的零售商,希望更明智地进行财务预测的金融机构,以及希望更快地进行疾病检测并降低管理成本的医疗机构。
在AML服务上使用RAPIDS的企业能够将AI模型训练速度提升高达20倍,将训练时间从数天缩短至数小时,或从数小时缩短到数分钟,具体取决于其数据集大小。这也是首次将RAPIDSS原生集成到云端数据科学平台上。
沃尔玛是率先采用RAPIDS的企业之一,借助其提高了预测的准确性。
沃尔玛供应链技术与云高级副总裁Srini Venkatesan表示:“RAPIDS软件有望使我们的重点工程流程实现规模化扩展,让我们能够运行最复杂的机器学习模型,进一步提高预测准确性。我们很高兴Azure Machine Learning服务能够与NVIDIA合作,为数据科学家提供RAPIDS和GPU计算,让我们能够在Azure云端运行RAPIDS。”
AML服务上的RAPIDS以Jupyter Notebook的形式提供,使用AML服务SDK创建资源组、工作区、集群、拥有正确配置的环境、以及可供使用的RAPIDS代码库。提供的模板脚本使用户能够尝试不同的数据大小和GPU数量并设置CPU基线。
微软Azure AI企业公司副总裁Eric Boyd表示: “我们的愿景是为客户提供最佳的技术,帮助他们为其工作带来变革。Azure Machine Learning服务是用于构建和部署机器学习模型的领先平台,我们很高兴能帮助数据科学家通过Azure与NVIDIA GPU加速技术的结合,实现显著的性能提升。”
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。