数据科学家如今可在Microsoft Azure使用NVIDIA的数据科学加速库——NVIDIA CUDA-X AI,将机器学习项目加速20倍。
只需点击几下,无论规模大小的企业就都能够实现数据科学加速,以前所未有的速度将海量数据转化为自身的竞争优势。
Microsoft Azure Machine Learning(AML)服务是首个集成RAPIDS的主流云平台,RAPIDS是NVIDIA CUDA-X AI的一个关键组件。通过访问RAPIDS开源库套件,数据科学家就能使用AML服务上的NVIDIA GPU,以前所未有的速度进行预测分析。
AML服务上的RAPIDS能够为企业带来大幅度的性能提升。各行各业的众多企业都在使用机器学习,基于其所拥有的海量数据创建预测性AI模型,其中包括希望更好地管理库存的零售商,希望更明智地进行财务预测的金融机构,以及希望更快地进行疾病检测并降低管理成本的医疗机构。
在AML服务上使用RAPIDS的企业能够将AI模型训练速度提升高达20倍,将训练时间从数天缩短至数小时,或从数小时缩短到数分钟,具体取决于其数据集大小。这也是首次将RAPIDSS原生集成到云端数据科学平台上。
沃尔玛是率先采用RAPIDS的企业之一,借助其提高了预测的准确性。
沃尔玛供应链技术与云高级副总裁Srini Venkatesan表示:“RAPIDS软件有望使我们的重点工程流程实现规模化扩展,让我们能够运行最复杂的机器学习模型,进一步提高预测准确性。我们很高兴Azure Machine Learning服务能够与NVIDIA合作,为数据科学家提供RAPIDS和GPU计算,让我们能够在Azure云端运行RAPIDS。”
AML服务上的RAPIDS以Jupyter Notebook的形式提供,使用AML服务SDK创建资源组、工作区、集群、拥有正确配置的环境、以及可供使用的RAPIDS代码库。提供的模板脚本使用户能够尝试不同的数据大小和GPU数量并设置CPU基线。
微软Azure AI企业公司副总裁Eric Boyd表示: “我们的愿景是为客户提供最佳的技术,帮助他们为其工作带来变革。Azure Machine Learning服务是用于构建和部署机器学习模型的领先平台,我们很高兴能帮助数据科学家通过Azure与NVIDIA GPU加速技术的结合,实现显著的性能提升。”
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究由香港理工大学和新加坡国立大学的团队共同完成,提出了R?ec,首个将推理能力内置于大型推荐模型的统一框架。与传统方法不同,R?ec在单一自回归过程中实现了推理生成和物品预测的无缝整合。研究者还设计了RecPO优化框架,无需人工标注即可同时提升模型的推理和推荐能力。实验结果显示,R?ec在三个数据集上显著超越现有方法,在Hit@5和NDCG@20指标上分别提升68.67%和45.21%。这一突破为下一代智能推荐系统开辟了新方向。
这项研究提出了CURE框架,通过强化学习让大语言模型同时学习编写代码和生成单元测试两种能力,无需使用标准代码作为监督。团队开发的ReasonFlux-Coder模型在仅用4.5K编程问题训练后,便在多个基准测试中超越了同类模型,代码生成准确率提高5.3%,最佳N选1准确率提高9.0%。该方法不仅提升了模型性能,还提高了推理效率,同时为降低API调用成本和无标签强化学习提供了新思路。