美国时间3月18日-21日,英伟达(NVIDIA)公司在加州圣何塞举办的GPU技术大会(GTC 2019)上正式推出NGC计划,旨在为当前所有数据中心计算应用提供广泛的GPU加速。曙光W760-G30R作为全能型GPU推理服务器,搭载NVIDIA Tesla T4 GPU,已经通过NGC认证测试,目前同步发布成为第一批NGC-Ready的计算平台。W760-G30R是面向数据中心设计的主流服务器,在改进散热系统后可支持最多6块NVIDIA Tesla T4 GPU,可应对全部GPU应用的异构加速平台。同时通过NGC认证的还有支持8块NVIDIA NVLink V100,面向高密度GPU计算和深度学习训练的X795-G30训练服务器。
通过NGC-Ready认证的系统可以支持NVIDIA的所有NGC软件包,这些软件包基于CUDA-X, 可以在各个应用层上加速用户的各种GPU应用场景,包括深度学习训练,推理,加速高性能计算,进行大数据分析和管理,3D图形设计和CAE分析等。通过全方位的软件支持,用户可以把精力从软件开发本身解放出来,专注于数据分析和自身业务。 同时,通过NGC-Ready的系统可以获得NVIDIA的GPU开发服务,通过向中科曙光购买该服务,将获得与DGX系列产品相同的软件预装,开发支持服务等必要内容。最大限度地提高系统利用率和用户工作效率。
NGC系统使用简单,基于NVIDIA Tesla T4 GPU的全功能策略,用户在部署时建议采用容器化,通过vGPU直接把应用发布给开发者,使用同样的硬件平台,企业客户可以在此基础上构建并灵活部署和迁移各项GPU加速的应用,真正实现软件定义计算的功能。
“中科曙光的一直致力于建立开放、统一的产品生态与理念,这与NVIDIA不谋而合。曙光与NVIDIA进一步合作将带来各种可能性,曙光目前实现多样化的产品业态全线支持英伟达系列GPU产品,并将双方的优势互补,共同推动人工智能技术和产品的发展。”中科曙光视觉与智能产品总监宋迪说。
目前,全球各行各业和研究团队都在开展人工智能、机器学习以及深度学习项目,作为中国最早采用和推动GPGPU(General Purpose Computing on GPU,即在图形处理器上进行加速计算)异构计算技术的高性能计算的厂商,早在2015年6月,中科曙光、中科院计算所、NVIDIA公司就共同成立“深度学习联合实验室”。2018年,中科曙光面向深度学习应用的开源平台建设及应用项目,成功入选“互联网+”、人工智能创新发展、数字经济试点重大工程拟支持项目名单。
作为支撑人工智能技术的幕后力量,同时也是国内是唯一一家同时具备完整的GPU服务器产品线和视觉计算产品的厂商,未来,中科曙光将在深度学习未来的发展过程中融合高性能计算和云平台等多方面技术优势,打造面向更广泛用户群体的产品应用体系,开拓人工智能的应用领域,构建良好的人工智能生态环境,助力人工智能技术在各行各业的发展融合。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。