采取预防性的云安全措施 改善数字生态系统
数据泄露是医疗行业信息系统面临的主要风险之一。由于这个行业保存了大量的敏感信息,比如个人信息、财务信息和健康信息等,一旦泄露,容易引发严重的后果。因此,无论是医院还是医疗服务公司,都在积极寻求预防性措施,防患于未然。
Rally是一家美国的医疗服务公司,旨在简化医疗服务流程,为公司和员工管理复杂的福利政策,并帮助改善整体健康状况。此外,公司开发团队支持Rally数字生态系统内的关键服务,以建立用户身份并验证资格。
Rally使用云提供商PaaS服务和IaaS虚拟基础架构(包括Amazon Web和Relational Database Service服务,以及MongoDB和Scala),这些基础架构涵盖身份管理、提供商及患者资格,以及最终用户和特权用户系统。
Rally的软件安全工程师Nathan Coleman表示:“我们希望对云基础架构进行全面的架构风险分析,尤其是身份验证和资格系统。这是我们还未完善的领域,公司亟需精通这方面技术的人才。新思科技拥有我们所需的专业技术知识,而且能确保与我们面谈的专业人士也会负责接下来的审查分析。而很多其它供应商不能确保这点。这也是我们选择和新思科技合作的原因之一。”
Rally主要有三个方面需要安全评估:
新思科技软件质量与安全部门为Rally提供的服务包括架构风险分析(ARA)、配置审查和代码辅助渗透测试。
配置审查深入评估Rally云基础架构安全状况,并审核了其部署的云应用程序和安全控制运行时配置,以识别漏洞,并提供描述配置如何满足或不满足安全性目标的简要报告。
渗透测试识别Rally管理的数据中哪些是敏感的,并开发应用程序,根据易受攻击状况及有可能被利用的方式进行分类。每个问题都是按照感知风险的顺序进行测试,使用手动和基于工具的混合方式进行运行时和安全代码分析。
Nathan Coleman 指出:“ARA验证了我们对架构的理解,并提供了建议。编码系统渗透测试和配置审查为修复提供了明确的路径 – 不仅检测出配置存在的问题,而且指导我们如何解决问题。ARA结果会反馈给渗透测试,误报率很低。配置审查可能是直接融入我们工作流程最简单的方法。”
他接着说:“我们希望进行彻底的架构风险分析,尤其是身份验证和资格系统。”
他总结道:“和新思科技合作十分顺畅,他们提供了专业的技术,分享了丰富的知识。我们热切期望参与到安全社区,并推动安全发展。与新思科技的合作有助于推动我们实现这两个目标。”
好文章,需要你的鼓励
是德科技高级副总裁兼通信解决方案事业部总裁Kailash Narayanan现场指出,算力固然重要,但如果能耗过高,技术的实用性将大打折扣,因此,所有的高速、高性能计算,都必须在极低的功耗下实现,这是AI等技术能否大规模落地的核心前提。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
来自上海交通大学和浙江大学等机构的研究团队开发出首个AI"记忆操作系统"MemOS,解决了AI系统无法实现人类般持久记忆和学习的根本限制。该系统将记忆视为核心计算资源进行调度、共享和演化,在时间推理任务中相比OpenAI记忆系统性能提升159%。MemOS采用三层架构设计,通过标准化记忆单元实现跨平台记忆迁移,有望改变企业AI部署模式。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。