采取预防性的云安全措施 改善数字生态系统
数据泄露是医疗行业信息系统面临的主要风险之一。由于这个行业保存了大量的敏感信息,比如个人信息、财务信息和健康信息等,一旦泄露,容易引发严重的后果。因此,无论是医院还是医疗服务公司,都在积极寻求预防性措施,防患于未然。
Rally是一家美国的医疗服务公司,旨在简化医疗服务流程,为公司和员工管理复杂的福利政策,并帮助改善整体健康状况。此外,公司开发团队支持Rally数字生态系统内的关键服务,以建立用户身份并验证资格。
Rally使用云提供商PaaS服务和IaaS虚拟基础架构(包括Amazon Web和Relational Database Service服务,以及MongoDB和Scala),这些基础架构涵盖身份管理、提供商及患者资格,以及最终用户和特权用户系统。
Rally的软件安全工程师Nathan Coleman表示:“我们希望对云基础架构进行全面的架构风险分析,尤其是身份验证和资格系统。这是我们还未完善的领域,公司亟需精通这方面技术的人才。新思科技拥有我们所需的专业技术知识,而且能确保与我们面谈的专业人士也会负责接下来的审查分析。而很多其它供应商不能确保这点。这也是我们选择和新思科技合作的原因之一。”
Rally主要有三个方面需要安全评估:
新思科技软件质量与安全部门为Rally提供的服务包括架构风险分析(ARA)、配置审查和代码辅助渗透测试。
配置审查深入评估Rally云基础架构安全状况,并审核了其部署的云应用程序和安全控制运行时配置,以识别漏洞,并提供描述配置如何满足或不满足安全性目标的简要报告。
渗透测试识别Rally管理的数据中哪些是敏感的,并开发应用程序,根据易受攻击状况及有可能被利用的方式进行分类。每个问题都是按照感知风险的顺序进行测试,使用手动和基于工具的混合方式进行运行时和安全代码分析。
Nathan Coleman 指出:“ARA验证了我们对架构的理解,并提供了建议。编码系统渗透测试和配置审查为修复提供了明确的路径 – 不仅检测出配置存在的问题,而且指导我们如何解决问题。ARA结果会反馈给渗透测试,误报率很低。配置审查可能是直接融入我们工作流程最简单的方法。”
他接着说:“我们希望进行彻底的架构风险分析,尤其是身份验证和资格系统。”
他总结道:“和新思科技合作十分顺畅,他们提供了专业的技术,分享了丰富的知识。我们热切期望参与到安全社区,并推动安全发展。与新思科技的合作有助于推动我们实现这两个目标。”
好文章,需要你的鼓励
在他看来,企业对AI的恐惧源自未知,而破解未知的钥匙,就藏在“AI平台+开源”这个看似简单的公式里。
斯坦福和魁北克研究团队首创"超新星事件数据集",通过让AI分析历史事件和科学发现来测试其"性格"。研究发现不同AI模型确实表现出独特而稳定的思维偏好:有些注重成就结果,有些关注情感关系,有些偏向综合分析。这项突破性研究为AI评估开辟了新方向,对改善人机协作和AI工具选择具有重要意义。
Pure Storage发布企业数据云(EDC),整合其现有产品组合,提供增强的数据存储可见性和基于策略的简化管理。EDC集成了Purity存储操作系统、Fusion资源管理、Pure1舰队管理和Evergreen消费模式等架构元素,提供类云存储管理环境。该方案支持声明式策略驱动管理,让客户专注业务成果而非基础设施管理。同时发布高性能闪存阵列和300TB直接闪存模块,并与Rubrik合作提供网络安全防护能力。
威斯康星大学研究团队提出"生成-筛选-排序"策略,通过结合快速筛选器和智能奖励模型,在AI代码验证中实现了11.65倍速度提升,准确率仅下降8.33%。该方法先用弱验证器移除明显错误代码,再用神经网络模型精确排序,有效解决了传统方法在速度与准确性之间的两难选择,为实用化AI编程助手铺平了道路。