放眼未来,专用芯片与电路可能无法拯救整个计算机行业。
时至今日,加速器早已无处不在:世界上的比特币大多由用于加速加密货币核心算法的芯片采矿得来,几乎每一种能够发出声音的数字产品都在使用硬连线音频解码器;而且当前亦有数十家初创企业在探索速度更快的专用芯片,旨在真正推动深度学习AI实现普及。这种专用化趋势,使得各类原本运行在通用CPU之上的软件及其内部常见算法得以在定制化硬件上带来更快的处理速度。但必须承认,从悲观角度来讲,这也是摩尔定律失效之后,我们能够在接下来一到两代芯片当中继续驱动计算能力保持增长的少数可行方法之一。
但更遗憾的是,这种过渡性方案也即将走向终点——至少将有不久的将来耗尽一切潜能空间。普林斯顿大学电气工程学副教授David Wentzlaff和他的博士生Adi Fuchs即将在本月IEEE国际高性能计算机架构研讨会上就这一研究方向提出重要结论。根据他们计算出的结果,芯片专用化无法带来与摩尔定律相契合的性能收益。换句话说,加速器的发展即将向已经开始萎缩的晶体管那样走向尽头,而且这一切的来临都要远早于人们的预期。
为了证明他们的观点,Fuchs与Wentzlaff首先需要弄清楚近期芯片中表现出的性能提升之内,有多大比例来自芯片专用化调整,又有多大比例源自摩尔定律本身。这意味着他们需要检查1000多份芯片数据表,同时弄清这些不同型号处理器中的哪些性能组成部分源自更好的算法,又有哪些由更巧妙的电路实现方法所贡献。更具体地讲,他们希望把这段时间半导体行业内的人类聪明才智进行一番量化统计。
为了实现这一目标,他们采取了工程师最擅长的方法:将问题转换为无量纲量。他们将其称为芯片专用化回归,并希望借此解决这样一个问题:“晶体管的计算能力在晶体管自身的固体物理潜能空间中还有多大的改善余地?”
利用这一指标,他们评估了特定应用集成电路(简称ASIC)上的视频解码性能,在GPU上测试游戏帧率,在FPGA上测试卷积神经网络并在ASIC上尝试比特币采矿。然而,得出的结果令人相当沮丧:专用芯片的增益在很大程度上仍然源自每平方毫米内可用晶体管数量的增加。换句话说,如果没有摩尔定律的支持,芯片专用化本身并不能带来显著的性能提升。
因此,如果专用化无法给出理想的答案,那么未来的出路在哪里?Wentzlaff建议半导体业界学习使用那些能够在逻辑停止时仍可实现扩展的事物进行计算。举例来说,每平方厘米内的可用闪存bit数能够不断增加,这与摩尔定律无关,因为业界已经开始能够制造出256层甚至更高单元层数的3D堆叠技术。Fuchs与Wentzlaff已经开始就这一方向展开探索,他们希望开发出一种新的计算机架构,通过让处理器查找存储在内存当中的原有计算结果(而非重新进行计算)来加快计算速度。
Wentzlaff最后总结道,摩尔定律的终结“并不是世界末日。但很明显,我们仍然需要为此做好准备。”
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。