放眼未来,专用芯片与电路可能无法拯救整个计算机行业。
时至今日,加速器早已无处不在:世界上的比特币大多由用于加速加密货币核心算法的芯片采矿得来,几乎每一种能够发出声音的数字产品都在使用硬连线音频解码器;而且当前亦有数十家初创企业在探索速度更快的专用芯片,旨在真正推动深度学习AI实现普及。这种专用化趋势,使得各类原本运行在通用CPU之上的软件及其内部常见算法得以在定制化硬件上带来更快的处理速度。但必须承认,从悲观角度来讲,这也是摩尔定律失效之后,我们能够在接下来一到两代芯片当中继续驱动计算能力保持增长的少数可行方法之一。
但更遗憾的是,这种过渡性方案也即将走向终点——至少将有不久的将来耗尽一切潜能空间。普林斯顿大学电气工程学副教授David Wentzlaff和他的博士生Adi Fuchs即将在本月IEEE国际高性能计算机架构研讨会上就这一研究方向提出重要结论。根据他们计算出的结果,芯片专用化无法带来与摩尔定律相契合的性能收益。换句话说,加速器的发展即将向已经开始萎缩的晶体管那样走向尽头,而且这一切的来临都要远早于人们的预期。
为了证明他们的观点,Fuchs与Wentzlaff首先需要弄清楚近期芯片中表现出的性能提升之内,有多大比例来自芯片专用化调整,又有多大比例源自摩尔定律本身。这意味着他们需要检查1000多份芯片数据表,同时弄清这些不同型号处理器中的哪些性能组成部分源自更好的算法,又有哪些由更巧妙的电路实现方法所贡献。更具体地讲,他们希望把这段时间半导体行业内的人类聪明才智进行一番量化统计。
为了实现这一目标,他们采取了工程师最擅长的方法:将问题转换为无量纲量。他们将其称为芯片专用化回归,并希望借此解决这样一个问题:“晶体管的计算能力在晶体管自身的固体物理潜能空间中还有多大的改善余地?”
利用这一指标,他们评估了特定应用集成电路(简称ASIC)上的视频解码性能,在GPU上测试游戏帧率,在FPGA上测试卷积神经网络并在ASIC上尝试比特币采矿。然而,得出的结果令人相当沮丧:专用芯片的增益在很大程度上仍然源自每平方毫米内可用晶体管数量的增加。换句话说,如果没有摩尔定律的支持,芯片专用化本身并不能带来显著的性能提升。
因此,如果专用化无法给出理想的答案,那么未来的出路在哪里?Wentzlaff建议半导体业界学习使用那些能够在逻辑停止时仍可实现扩展的事物进行计算。举例来说,每平方厘米内的可用闪存bit数能够不断增加,这与摩尔定律无关,因为业界已经开始能够制造出256层甚至更高单元层数的3D堆叠技术。Fuchs与Wentzlaff已经开始就这一方向展开探索,他们希望开发出一种新的计算机架构,通过让处理器查找存储在内存当中的原有计算结果(而非重新进行计算)来加快计算速度。
Wentzlaff最后总结道,摩尔定律的终结“并不是世界末日。但很明显,我们仍然需要为此做好准备。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。