放眼未来,专用芯片与电路可能无法拯救整个计算机行业。
时至今日,加速器早已无处不在:世界上的比特币大多由用于加速加密货币核心算法的芯片采矿得来,几乎每一种能够发出声音的数字产品都在使用硬连线音频解码器;而且当前亦有数十家初创企业在探索速度更快的专用芯片,旨在真正推动深度学习AI实现普及。这种专用化趋势,使得各类原本运行在通用CPU之上的软件及其内部常见算法得以在定制化硬件上带来更快的处理速度。但必须承认,从悲观角度来讲,这也是摩尔定律失效之后,我们能够在接下来一到两代芯片当中继续驱动计算能力保持增长的少数可行方法之一。
但更遗憾的是,这种过渡性方案也即将走向终点——至少将有不久的将来耗尽一切潜能空间。普林斯顿大学电气工程学副教授David Wentzlaff和他的博士生Adi Fuchs即将在本月IEEE国际高性能计算机架构研讨会上就这一研究方向提出重要结论。根据他们计算出的结果,芯片专用化无法带来与摩尔定律相契合的性能收益。换句话说,加速器的发展即将向已经开始萎缩的晶体管那样走向尽头,而且这一切的来临都要远早于人们的预期。
为了证明他们的观点,Fuchs与Wentzlaff首先需要弄清楚近期芯片中表现出的性能提升之内,有多大比例来自芯片专用化调整,又有多大比例源自摩尔定律本身。这意味着他们需要检查1000多份芯片数据表,同时弄清这些不同型号处理器中的哪些性能组成部分源自更好的算法,又有哪些由更巧妙的电路实现方法所贡献。更具体地讲,他们希望把这段时间半导体行业内的人类聪明才智进行一番量化统计。
为了实现这一目标,他们采取了工程师最擅长的方法:将问题转换为无量纲量。他们将其称为芯片专用化回归,并希望借此解决这样一个问题:“晶体管的计算能力在晶体管自身的固体物理潜能空间中还有多大的改善余地?”
利用这一指标,他们评估了特定应用集成电路(简称ASIC)上的视频解码性能,在GPU上测试游戏帧率,在FPGA上测试卷积神经网络并在ASIC上尝试比特币采矿。然而,得出的结果令人相当沮丧:专用芯片的增益在很大程度上仍然源自每平方毫米内可用晶体管数量的增加。换句话说,如果没有摩尔定律的支持,芯片专用化本身并不能带来显著的性能提升。
因此,如果专用化无法给出理想的答案,那么未来的出路在哪里?Wentzlaff建议半导体业界学习使用那些能够在逻辑停止时仍可实现扩展的事物进行计算。举例来说,每平方厘米内的可用闪存bit数能够不断增加,这与摩尔定律无关,因为业界已经开始能够制造出256层甚至更高单元层数的3D堆叠技术。Fuchs与Wentzlaff已经开始就这一方向展开探索,他们希望开发出一种新的计算机架构,通过让处理器查找存储在内存当中的原有计算结果(而非重新进行计算)来加快计算速度。
Wentzlaff最后总结道,摩尔定律的终结“并不是世界末日。但很明显,我们仍然需要为此做好准备。”
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。