SUSE Linux Enterprise Server for SAP Applications是首个针对Intel Optane DC Persistent Memory与SAP HANA工作负载进行了优化的Linux平台
2019年1月16日——德国纽伦堡——SUSE宣布支持Intel Optane DC Persistent Memory与SAP HANA。现在,SAP HANA用户在SUSE Linux Enterprise Server for SAP Applications上运行时,可以发挥数据中心Intel Optane DC Persistent Memory高容量的优势。通过在距离处理器更近的地方移动和维护更大的数据量,用户可以优化其工作负载,并最大限度地减少维护期间从系统存储中获取数据的较高延迟。为了帮助客户进行IT基础设施转型以降低成本、提升性能、提高效率并增强竞争力,SUSE目前还通过多家云服务提供商和硬件供应商提供对Intel Optane DC Persistent Memory测试版本的支持。
“Persistent Memory技术将会催生新的数据访问和存储应用程序。”SUSE首席技术官Thomas Di Giacomo说道,“通过提供基于Inte lOptane DC Persistent Memory获得完全支持的解决方案,企业可以更好地发挥SAP HANA的性能优势。SUSE持续与SAP和Intel等公司开展合作,服务于世界各地希望通过IT基础设施转型来推动增长的客户。正是他们的需求指引了我们创新方向。”
Intel非易失性内存和存储解决方案部门副总裁兼总经理AlperIlkbahar说道:“Intel Optane DC Persistent Memory代表了一类专为数据中心使用而设计的新型内存和存储技术。此类新型内存旨在高性价比、大容量的内存数据库解决方案,有助于延长系统正常运行时间和加快上电后的恢复速度,以及提升云端规模应用程序的性能。我们与SUSE和SAP合作将这项革新技术带给客户,由此可以帮助他们利用新一代应用程序和服务,在这个以数据为中心的时代实现革命性功能。”
SAP HANA技术创新网络的Martin Heisig说道:“能够为SAP HANA提供PersistentMemory,是我们与SUSE和Intel的长期合作关系中一座意义非凡的里程碑。SAP数字核心的基础理念是简化基础架构以提高工作效率和实时洞察。”
SAP HANA为大小企业提供适用于其SAP应用程序的高性能数据库解决方案。使用SUSE Linux Enterprise Server for SAP Applications运行集成Intel Optane DC Persistent Memory的SAP HANA工作负载,有望帮助客户节省基础设施成本并降低管理开销。由于SAP HANA工作负载在Linux上运行,SUSE Linux Enterprise是目前唯一能够为SAP HANA和Intel Optane DC Persistent Memory提供支持的解决方案。
SUSE Linux Enterprise 12 ServicePack 4包含了对SUSE Linux Enterprise Server for SAP Applications上运行Intel Optane DC Persistent Memory与SAP HANA工作负载的支持,该ServicePack现已在全球范围发布。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。