至顶网服务器频道 12月24日 新闻消息(文/李祥敬):随着云计算的发展,如今,几乎每个企业都在计划或正在使用云计算。企业上云加速,安全仍然是上云企业最关心的问题。虽然云计算可以让企业更加灵活,并且有效降低成本,但缺乏数据保护和合规标准使其安全成为最大的应用障碍。
为了缓解这些担忧,企业尝试建立内部私有云。采用公有云服务的企业必须将数据托管于云服务商的数据中心,企业对于应用和数据并不可控,而私有云可以提供比公共云更大的灵活性和敏捷性、更细粒度的数据控制以及满足特定行业的合规需求的能力。
然而,位于企业内部的私有云并不意味着它比公共云更安全,私有云也有自己的安全挑战和风险。
私有云是为一个客户单独使用而构建的,因而可以提供对数据、安全性和服务质量的最有效控制。客户拥有基础设施,并可以控制在此基础设施上部署应用程序的方式。
私有云为企业各个业务部门提供统一服务,不仅仅包括计算资源、存储资源、网络资源,还应该包括安全资源,如身份认证、病毒查杀、入侵检测、行为审计等,只分配了计算资源与存储资源的私有云,对用户来讲,无异于“裸奔”。
对于企业私有云来说,在云计算引入虚拟化技术后,物理资产变成了虚拟资产,传统网络环境中用来进行安全隔离的物理资源边界、网络边界都不再存在,基于物理安全设备的传统安全解决方案变得难以部署和实施。
在这种情况下,大多数企业都只能在整个云环境的物理边界部署一些传统的防火墙、入侵检测等安全设备,而这就使得安全运维管理人员面对整个云环境时犹如面对一个黑盒,完全无法查看和管控云环境内的安全情况。
黑盒状态的云环境使得其中的安全问题往往难以发现、难以定位、难以防护、难以运维和管理。发生安全问题的实体通常是虚拟化形态的资产或受到虚拟化形态资产所影响的物理资产,如虚拟机被入侵,或虚拟机资源占用过多导致物理服务器资源耗尽等。
所以,私有云在防火墙内,客户对整个系统似乎有着绝对的所有权和控制权,但这并不意味着更安全。私有云的安全需要从边界防护、基础防护、增强防护、应用防护等四个方面着手,比如网络层实现动态安全防护、构建云安全管理系统、增强和完善云安全服务(加密认证等)、引入云安全访问代理等。
和云计算的定义一样,关于云安全也没有统一的定义,但对于企业私有云来说,云安全就是确保用户在稳定和安全合规的情况下在云计算中心上运行应用,并保证存储于云中的数据的完整性和机密性。
事实上,除非你拥有一支训练有素的网络安全分析师团队,否则DIY私有云比使用超大规模的公有云更容易受到攻击。Rackspace帝普已经在云安全领域投资了20年,而且Rackspace基于管理服务可以为企业提供领先的私有云服务——OpenStack。
在安全漏洞方面,Rackspace帝普保护企业的整个云堆栈,从基础架构到操作系统,一直到应用层,24x7x365支持包括策略更新、修复程序甚至新技术的引入。另外,有调查显示,云安全的最大威胁是错误配置,其次是通过员工滥用凭证未经授权的访问和访问控制不当和不安全的接口/APIs。可以说私有云安全的许多关键威胁来自组织内部或防火墙之后。
如果企业希望停止对IT安全性的担忧,并开始聚焦于进行业务创新,那么可以将Rackspace帝普私有云视为一种服务,它可以在企业中提供更大的安全性和合规性,让企业专注于业务创新。比如Rackspace Kubernetes as a Service将技术堆栈从基础设施保护扩展到集群本身,包括在集群中运行的容器和运行应用程序所需的附加服务;Hyper-v解决了开发灾难恢复计划的问题,并在所有标准配置中包括了地理冗余和高可用性选项;Pivotal Cloud Foundry内置了安全特性,与Rackspace帝普的主动补丁和监控相结合,确保应用运行的安全。
总之,Rackspace帝普私有云结合自身在安全领域的积累,让私有云更加安全,毕竟企业选择私有云的主要目的之一就是为了安全。Rackspace帝普提供的私有云服务让企业的IT基础设施建设更安全,从而帮助企业应对挑战,推动业务创新。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。