Tensor Core GPU在每一项MLPerf基准测试结果中均实现最佳表现;用户可通过NGC使用加速堆栈。
在最新公布的业内首套人工智能基准测试中,NVIDIA创下6项人工智能性能记录。
在谷歌、英特尔、百度、NVIDIA及其他数十家科技行业领军企业的支持下,新型基准测试套件MLPerf可测定一系列深度学习工作负载。该套件涵盖了计算机视觉、语言翻译、个性化推荐以及强化学习任务等领域,旨在成为业内首个客观的人工智能基准测试套件。
NVIDIA在其提交的6个MLPerf基准测试结果中均取得了最佳表现。这些测试涵盖了多种工作负载和基础架构规模 – 从单节点上的16颗GPU到跨80节点上的多达640颗GPU。
这些测试分为6大类别,分别为图像分类、对象实例分割、目标检测、临时翻译、复发性翻译与推荐系统。NVIDIA并未提交第7类别,即强化学习的基准测试,原因是该类别尚未充分利用到GPU加速。
NVIDIA在语言翻译这一关键基准测试类别中表现尤为出色,仅需6.2分钟即完成了Transformer神经网络的训练。
NVIDIA工程师利用NVIDIA DGX系统实现了这些测试结果。该系统包括全球最强大的人工智能系统NVIDIA DGX-2,搭载了16颗完全连接的V100 Tensor Core GPU。
NVIDIA是唯一一家参与多达6项基准测试的科技公司,充分展现出V100 Tensor Core GPU在部署人工智能工作负载方面的通用性。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“全新基准MLPerf展示了NVIDIA Tensor Core GPU非凡的性能与通用性。我们的Tensor Core GPU拥有高性价比,且可通过各地的云服务提供商及电脑制造商实现供货,进而帮助世界各地的开发人员在开发过程中的每一个阶段推进人工智能的应用。”
要想在复杂多样的计算工作负载中实现优异性能,不仅仅需要出色的芯片。加速计算也不单单与加速器有关,还需要实现全堆栈创新。
NVIDIA堆栈包括NVIDIA Tensor Cores、NVLink、NVSwitch、DGX系统、CUDA、cuDNN、NCCL、经过优化的深度学习框架容器以及NVIDIA软件开发套件。
NVIDIA的人工智能平台是最便捷且高性价比的选择。Tensor Core GPU可通过各地的云服务提供商及电脑制造商实现供货。
借助售价仅为2500美元的超强桌面级GPU——NVIDIA TITAN RTX,用户在桌面上也可实现相同的Tensor Core GPU强大功能。如果按照3年使用期来计算,该GPU每小时的费用仅相当于几美分。
通过NVIDIA GPU Cloud(NGC)云容器注册,用户可持续更新这些软件的加速堆栈。
用于实现NVIDIA业界领先的MLPerf性能的软件创新与优化,现可通过我们最新的NGC深度学习容器免费获取。
此容器包含经过NVIDIA优化的完整软件堆栈及顶级人工智能框架。18.11版本NGC深度学习容器包含了用于实现我们MLPerf基准测试结果的详细软件。
开发人员可将这些软件用于任意地点以及各大开发阶段:
如果您计划开展自己的人工智能项目,或者参与MLPerf基准测试,请通过NGC容器注册下载容器。
好文章,需要你的鼓励
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
欧洲太空通信产业发展迅猛。乌克兰Kyivstar获得监管批准测试Starlink直连手机服务,完成了与星链卫星网络的SIM卡集成测试,计划2025年第四季度推出支持短信和OTT消息的D2C服务。同时,CTO宣布即将发射首个再生5G毫米波载荷,其J-1任务旨在演示轨道超高速低延迟5G传输。该公司正构建超低轨道星座,使用5G毫米波频谱提供高速低延迟连接。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。