Tensor Core GPU在每一项MLPerf基准测试结果中均实现最佳表现;用户可通过NGC使用加速堆栈。
在最新公布的业内首套人工智能基准测试中,NVIDIA创下6项人工智能性能记录。
在谷歌、英特尔、百度、NVIDIA及其他数十家科技行业领军企业的支持下,新型基准测试套件MLPerf可测定一系列深度学习工作负载。该套件涵盖了计算机视觉、语言翻译、个性化推荐以及强化学习任务等领域,旨在成为业内首个客观的人工智能基准测试套件。
NVIDIA在其提交的6个MLPerf基准测试结果中均取得了最佳表现。这些测试涵盖了多种工作负载和基础架构规模 – 从单节点上的16颗GPU到跨80节点上的多达640颗GPU。
这些测试分为6大类别,分别为图像分类、对象实例分割、目标检测、临时翻译、复发性翻译与推荐系统。NVIDIA并未提交第7类别,即强化学习的基准测试,原因是该类别尚未充分利用到GPU加速。
NVIDIA在语言翻译这一关键基准测试类别中表现尤为出色,仅需6.2分钟即完成了Transformer神经网络的训练。
NVIDIA工程师利用NVIDIA DGX系统实现了这些测试结果。该系统包括全球最强大的人工智能系统NVIDIA DGX-2,搭载了16颗完全连接的V100 Tensor Core GPU。
NVIDIA是唯一一家参与多达6项基准测试的科技公司,充分展现出V100 Tensor Core GPU在部署人工智能工作负载方面的通用性。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“全新基准MLPerf展示了NVIDIA Tensor Core GPU非凡的性能与通用性。我们的Tensor Core GPU拥有高性价比,且可通过各地的云服务提供商及电脑制造商实现供货,进而帮助世界各地的开发人员在开发过程中的每一个阶段推进人工智能的应用。”
要想在复杂多样的计算工作负载中实现优异性能,不仅仅需要出色的芯片。加速计算也不单单与加速器有关,还需要实现全堆栈创新。
NVIDIA堆栈包括NVIDIA Tensor Cores、NVLink、NVSwitch、DGX系统、CUDA、cuDNN、NCCL、经过优化的深度学习框架容器以及NVIDIA软件开发套件。
NVIDIA的人工智能平台是最便捷且高性价比的选择。Tensor Core GPU可通过各地的云服务提供商及电脑制造商实现供货。
借助售价仅为2500美元的超强桌面级GPU——NVIDIA TITAN RTX,用户在桌面上也可实现相同的Tensor Core GPU强大功能。如果按照3年使用期来计算,该GPU每小时的费用仅相当于几美分。
通过NVIDIA GPU Cloud(NGC)云容器注册,用户可持续更新这些软件的加速堆栈。
用于实现NVIDIA业界领先的MLPerf性能的软件创新与优化,现可通过我们最新的NGC深度学习容器免费获取。
此容器包含经过NVIDIA优化的完整软件堆栈及顶级人工智能框架。18.11版本NGC深度学习容器包含了用于实现我们MLPerf基准测试结果的详细软件。
开发人员可将这些软件用于任意地点以及各大开发阶段:
如果您计划开展自己的人工智能项目,或者参与MLPerf基准测试,请通过NGC容器注册下载容器。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。