Nvidia今天开始发售Jetson AGX Xavier,一款面向工业机器人和其他自主设备的微型机器学习芯片。
去年Nvidia将该芯片作为早期采用者开发套件的一部分在有限范围内进行了首次发布,这次发布也使得Nvidia能够在今天建立一系列令人印象深刻的初始客户名单。
中国电商巨头京东和美团点评正在使用Jetson AGX Xavier打造一批送货机器人,还有一家名为Oxford Nanopore Technologies的英国初创公司正在使用该芯片开发一种手持式DNA测序仪。
Jetson AGX Xavier每秒最多可执行32万亿次计算操作。据Nvidia称,这与专业工作站中使用的某些GPU的性能相当。
区别在于体积。Jetson AGX Xavier芯片体积小巧,可放在手掌中,功率仅为10瓦,比Nvidia企业级GPU低10倍。如果机器设备需要额外的处理能力,功率可以增加到15或30瓦。
Jetson AGX Xavier封装了超过90亿个晶体管,分布于不同芯片中。该模块的核心是Volta GPU,最大时钟频率为1.37千兆赫兹,576个核心。根据Nvidia的说法,其中64个核心是Tensor Core,这是用于加速机器学习算法的专用电路。
该GPU配有八核CPU,两个加速器主要针对计算机视觉任务的优化,32GB板载闪存。Jetson AGX Xavier还提供了丰富的连接选项,让开发者可以将多个传感器连接到系统。
除了Jetson AGX Xavier之外,Nvidia现有的Jetson TX1和Jetson TX2模块主要针对部署在网络边缘的自主型机器。Komatsu是世界领先的重型设备制造商之一,去年与Nvidia展开合作,在一个旨在提高建筑工地工人安全的项目中使用了TX2模块。
Nvidia将以1099美元的价格提供该芯片,批量订单需要超过1000件。
尽管这款芯片针对的是低功耗应用,但速度对于Nvidia产品线来说仍然至关重要。在今天早些时候的另一个公告中,Nvidia表示已经创造了六项人工智能性能记录。Nvidia称,采用高端Tensor Core GPU的Nvidia DGX系统在由Nvidia、谷歌、英特尔、百度和其他几十家公司支持的MLPerf套件中运行了六个基准测试取得了新的记录。
Nvidia加速计算的副总裁兼总经理Ian Buck在新闻发布会上表示:“我们是最具成本效益的人工智能平台。”
但这是一场持久战。今天,Google Cloud也提交了使用Tensor Processing Unit机器学习芯片的计算服务的MLPerf数据。谷歌称,该服务为训练机器学习模型提供了“最易于获得的规模”。
Nvidia这些消息是在其股价急剧下跌的背景下发布的。投资者对中美贸易关系以及芯片行业可能放缓的担忧导致自10月1日以来股价下跌了48%。今天据彭博社报道称,软银集团正在考虑在明年初卖掉自己在Nvidia的60亿美元股权。
好文章,需要你的鼓励
英国宠物慈善机构PDSA数据显示,超过半数宠物主担心无法承担兽医费用。科技公司正通过AI和物联网技术解决这一市场需求。在伦敦兽医展上,多家初创公司展示了创新技术:AI for Pet利用视觉AI分析宠物眼部、皮肤等图像提供健康洞察;Sylvester.ai开发AI模型识别猫咪疼痛表情;VEA整合患者数据自动化诊断。此外,智能项圈等物联网设备可追踪宠物健康症状。这些技术有助于宠物主采取预防措施,降低兽医费用。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
北欧国家启动统一人工智能产业计划,旨在通过合作在全球舞台上竞争,获得微软和谷歌支持。10月成立的新北欧AI中心获得350万英镑初始预算,但谷歌和微软是唯一提供资金支持的科技公司,具体金额保密。该中心将开发生成式AI系统并建设应用AI服务的系统。北欧教育部长承诺追加资金开发大型北欧语言生成AI模型。尽管资金有限,但北欧国家希望通过联合力量在AI竞赛中提升地位。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。