Nvidia今天开始发售Jetson AGX Xavier,一款面向工业机器人和其他自主设备的微型机器学习芯片。
去年Nvidia将该芯片作为早期采用者开发套件的一部分在有限范围内进行了首次发布,这次发布也使得Nvidia能够在今天建立一系列令人印象深刻的初始客户名单。
中国电商巨头京东和美团点评正在使用Jetson AGX Xavier打造一批送货机器人,还有一家名为Oxford Nanopore Technologies的英国初创公司正在使用该芯片开发一种手持式DNA测序仪。
Jetson AGX Xavier每秒最多可执行32万亿次计算操作。据Nvidia称,这与专业工作站中使用的某些GPU的性能相当。
区别在于体积。Jetson AGX Xavier芯片体积小巧,可放在手掌中,功率仅为10瓦,比Nvidia企业级GPU低10倍。如果机器设备需要额外的处理能力,功率可以增加到15或30瓦。
Jetson AGX Xavier封装了超过90亿个晶体管,分布于不同芯片中。该模块的核心是Volta GPU,最大时钟频率为1.37千兆赫兹,576个核心。根据Nvidia的说法,其中64个核心是Tensor Core,这是用于加速机器学习算法的专用电路。
该GPU配有八核CPU,两个加速器主要针对计算机视觉任务的优化,32GB板载闪存。Jetson AGX Xavier还提供了丰富的连接选项,让开发者可以将多个传感器连接到系统。
除了Jetson AGX Xavier之外,Nvidia现有的Jetson TX1和Jetson TX2模块主要针对部署在网络边缘的自主型机器。Komatsu是世界领先的重型设备制造商之一,去年与Nvidia展开合作,在一个旨在提高建筑工地工人安全的项目中使用了TX2模块。
Nvidia将以1099美元的价格提供该芯片,批量订单需要超过1000件。
尽管这款芯片针对的是低功耗应用,但速度对于Nvidia产品线来说仍然至关重要。在今天早些时候的另一个公告中,Nvidia表示已经创造了六项人工智能性能记录。Nvidia称,采用高端Tensor Core GPU的Nvidia DGX系统在由Nvidia、谷歌、英特尔、百度和其他几十家公司支持的MLPerf套件中运行了六个基准测试取得了新的记录。
Nvidia加速计算的副总裁兼总经理Ian Buck在新闻发布会上表示:“我们是最具成本效益的人工智能平台。”
但这是一场持久战。今天,Google Cloud也提交了使用Tensor Processing Unit机器学习芯片的计算服务的MLPerf数据。谷歌称,该服务为训练机器学习模型提供了“最易于获得的规模”。
Nvidia这些消息是在其股价急剧下跌的背景下发布的。投资者对中美贸易关系以及芯片行业可能放缓的担忧导致自10月1日以来股价下跌了48%。今天据彭博社报道称,软银集团正在考虑在明年初卖掉自己在Nvidia的60亿美元股权。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。