Nvidia今天开始发售Jetson AGX Xavier,一款面向工业机器人和其他自主设备的微型机器学习芯片。
去年Nvidia将该芯片作为早期采用者开发套件的一部分在有限范围内进行了首次发布,这次发布也使得Nvidia能够在今天建立一系列令人印象深刻的初始客户名单。
中国电商巨头京东和美团点评正在使用Jetson AGX Xavier打造一批送货机器人,还有一家名为Oxford Nanopore Technologies的英国初创公司正在使用该芯片开发一种手持式DNA测序仪。
Jetson AGX Xavier每秒最多可执行32万亿次计算操作。据Nvidia称,这与专业工作站中使用的某些GPU的性能相当。
区别在于体积。Jetson AGX Xavier芯片体积小巧,可放在手掌中,功率仅为10瓦,比Nvidia企业级GPU低10倍。如果机器设备需要额外的处理能力,功率可以增加到15或30瓦。
Jetson AGX Xavier封装了超过90亿个晶体管,分布于不同芯片中。该模块的核心是Volta GPU,最大时钟频率为1.37千兆赫兹,576个核心。根据Nvidia的说法,其中64个核心是Tensor Core,这是用于加速机器学习算法的专用电路。
该GPU配有八核CPU,两个加速器主要针对计算机视觉任务的优化,32GB板载闪存。Jetson AGX Xavier还提供了丰富的连接选项,让开发者可以将多个传感器连接到系统。
除了Jetson AGX Xavier之外,Nvidia现有的Jetson TX1和Jetson TX2模块主要针对部署在网络边缘的自主型机器。Komatsu是世界领先的重型设备制造商之一,去年与Nvidia展开合作,在一个旨在提高建筑工地工人安全的项目中使用了TX2模块。
Nvidia将以1099美元的价格提供该芯片,批量订单需要超过1000件。
尽管这款芯片针对的是低功耗应用,但速度对于Nvidia产品线来说仍然至关重要。在今天早些时候的另一个公告中,Nvidia表示已经创造了六项人工智能性能记录。Nvidia称,采用高端Tensor Core GPU的Nvidia DGX系统在由Nvidia、谷歌、英特尔、百度和其他几十家公司支持的MLPerf套件中运行了六个基准测试取得了新的记录。
Nvidia加速计算的副总裁兼总经理Ian Buck在新闻发布会上表示:“我们是最具成本效益的人工智能平台。”
但这是一场持久战。今天,Google Cloud也提交了使用Tensor Processing Unit机器学习芯片的计算服务的MLPerf数据。谷歌称,该服务为训练机器学习模型提供了“最易于获得的规模”。
Nvidia这些消息是在其股价急剧下跌的背景下发布的。投资者对中美贸易关系以及芯片行业可能放缓的担忧导致自10月1日以来股价下跌了48%。今天据彭博社报道称,软银集团正在考虑在明年初卖掉自己在Nvidia的60亿美元股权。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。