图形芯片已经成为实现人工智能的标准,因为人工智能非常适合于加速视频游戏的并行处理。现在,图形芯片越来越多地进入云计算领域,在这个领域中那些提供图像和语音识别、自动驾驶汽车的企业可以租赁图形芯片的处理能力。
特别是,来自市场领导者Nvidia的GPU专注于在网络边缘执行AI任务,以实现服务的加速。这个被称为推理的过程指的是神经网络能够从实时呈现的新数据中进行事物推断——这与预先训练模型的过程有所不同。
近日,Nvidia首席执行官黄仁勋公布了最新的T4云GPU,并将于9月推出,在Google的云上提供。他在本周达拉斯举行的SC18超级计算大会的主题演讲中宣布了这一消息。
谷歌是第一个支持T4访问的云提供商,但它不会是最后一个。Nvidia副总裁、加速计算总经理Ian Buck在一次简报中表示:“它在云中的速度令人印象深刻。我们正处于GPU计算兴起的时代。”
谷歌的云并不是唯一支持T4的云。来自Dell EMC、IBM、联想和超微等主要计算机制造商的大约57种服务器设计也采用了这种芯片,其大小与手机相当。
Buck表示,由于体积小、运行功率相对较低,因此T4适合在网络边缘运行AI应用,此外还可用于AI模型和计算机图形的分布式训练。
谷歌似乎更专注于推理,并通过深度学习虚拟机图像在Google Compute Engine进行推理,而且很快将通过Google Kubernetes Engine,以及通过谷歌的Cloud Machine Learning Engine,用于管理容器(这种软件可以使应用在多个计算环境中无需更改即可运行)。
尽管Nvidia在加速人工智能计算工作、以及使用GPU来弥补CPU芯片(仍然是大多数计算机的核心)性能提升放缓方面处于领先地位,但由于人工智能服务的迅速发展,Nvidia也面临越来越激烈的竞争,例如来自AMD、英特尔和Xilinx等芯片制造商,以及其他如FPGA定制芯片和应用专用集成电路等其他类型芯片带来的挑战。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“摩尔定律的放缓正在推动采用GPU、FPGA和ASIC的异构数据中心计算的加速。像AMD、英特尔、Nvidia和Xilinx这样的公司正在加速整个领域的一切。”
Nvidia今天还谈到了在超级计算领域的覆盖,在本周公布的半年度TOP500超级计算机榜单中,使用Nvidia GPU的系统数量比去年同期增长了48%,达到127套。此外,Nvidia的芯片也被用于位于榜单第一和第二位置的两套超级计算机,美国能源部部署在橡树岭国家实验室的Summit超级计算机,以及部署在劳伦斯利弗莫尔国家实验室的Sierra超级计算机。
黄仁勋表示:“这是Nvidia在超级计算领域取得突破的一年。随着摩尔定律的终结,一个又人工智能和机器学习工作负载驱动的全新HPC市场正在出现。”
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。