图形芯片已经成为实现人工智能的标准,因为人工智能非常适合于加速视频游戏的并行处理。现在,图形芯片越来越多地进入云计算领域,在这个领域中那些提供图像和语音识别、自动驾驶汽车的企业可以租赁图形芯片的处理能力。
特别是,来自市场领导者Nvidia的GPU专注于在网络边缘执行AI任务,以实现服务的加速。这个被称为推理的过程指的是神经网络能够从实时呈现的新数据中进行事物推断——这与预先训练模型的过程有所不同。
近日,Nvidia首席执行官黄仁勋公布了最新的T4云GPU,并将于9月推出,在Google的云上提供。他在本周达拉斯举行的SC18超级计算大会的主题演讲中宣布了这一消息。
谷歌是第一个支持T4访问的云提供商,但它不会是最后一个。Nvidia副总裁、加速计算总经理Ian Buck在一次简报中表示:“它在云中的速度令人印象深刻。我们正处于GPU计算兴起的时代。”
谷歌的云并不是唯一支持T4的云。来自Dell EMC、IBM、联想和超微等主要计算机制造商的大约57种服务器设计也采用了这种芯片,其大小与手机相当。
Buck表示,由于体积小、运行功率相对较低,因此T4适合在网络边缘运行AI应用,此外还可用于AI模型和计算机图形的分布式训练。
谷歌似乎更专注于推理,并通过深度学习虚拟机图像在Google Compute Engine进行推理,而且很快将通过Google Kubernetes Engine,以及通过谷歌的Cloud Machine Learning Engine,用于管理容器(这种软件可以使应用在多个计算环境中无需更改即可运行)。
尽管Nvidia在加速人工智能计算工作、以及使用GPU来弥补CPU芯片(仍然是大多数计算机的核心)性能提升放缓方面处于领先地位,但由于人工智能服务的迅速发展,Nvidia也面临越来越激烈的竞争,例如来自AMD、英特尔和Xilinx等芯片制造商,以及其他如FPGA定制芯片和应用专用集成电路等其他类型芯片带来的挑战。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“摩尔定律的放缓正在推动采用GPU、FPGA和ASIC的异构数据中心计算的加速。像AMD、英特尔、Nvidia和Xilinx这样的公司正在加速整个领域的一切。”
Nvidia今天还谈到了在超级计算领域的覆盖,在本周公布的半年度TOP500超级计算机榜单中,使用Nvidia GPU的系统数量比去年同期增长了48%,达到127套。此外,Nvidia的芯片也被用于位于榜单第一和第二位置的两套超级计算机,美国能源部部署在橡树岭国家实验室的Summit超级计算机,以及部署在劳伦斯利弗莫尔国家实验室的Sierra超级计算机。
黄仁勋表示:“这是Nvidia在超级计算领域取得突破的一年。随着摩尔定律的终结,一个又人工智能和机器学习工作负载驱动的全新HPC市场正在出现。”
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。