Nvidia今天早些时候推出了一款新的GPU加速平台,该平台能够处理更大量的数据以应对深度学习和机器学习。Nvidia希望借此巩固自己在人工智能方面的领先地位。
RAPIDS背后的理念是为企业带来性能提升,从而帮助他们客服依赖于处理大量数据的“高度复杂的业务挑战”,例如预测信用卡欺诈、预测零售库存以及了解消费者购买行为等,Nvidia这样表示。
GPU已经成为AI工作负载(如深度学习和机器学习)的必要工具,因为GPU能够提供比常规CPU更强大的处理能力。但Nvidia人工智能基础设施产品负责人Jeffrey Tseng在慕尼黑举行的Nvidia GPU技术大会之前表示,企业仍需要更多处理能力来应对要求最苛刻的工作负载。
Tseng表示:“如今的企业正在变得越来越多地以数据为驱动。数据分析和机器学习现在是领先的高性能计算领域,但是我们在使用数据方面遇到了障碍。”
开源RAPIDS平台的主要组件是一套CUDA加速库,用于基于GPU的分析、机器学习和数据可视化。 Tseng表示,Nvidia将启用5个最受欢迎的机器学习库并加速自己的GPU。Nvidia称,这样做可以通过更多迭代来优化AI训练,从而提高模型的准确性。
Nvidia表示,这些库为数据科学家提供了在GPU上运行整个数据管道所需的工具。RAPIDS平台采用XGBoost机器学习算法,该算法用于在Nvidia DGX-2系统上训练数据模型,结合了16个完全互连GPU硬件的DGX-2,可提供高达2 petaflops的处理能力。结果是,与在CPU系统上进行训练相比,数据科学家可以将深度学习和机器学习算法训练减少50倍。
“我们看到,这个新软件平台和我们发布的硬件让训练时间大幅缩减,基础设施成本降低,”Tseng说。
Nvidia得到了众多大型科技企业的信任,这些企业都已经开始采用RAPIDS平台,其中就包括数据库巨头Oracle,Oracle通过Nvidia云在其Oracle Cloud Infrastructure上支持RAPIDS。Nvidia表示,Oracle还致力于在Oracle Data Science Cloud上支持RAPIDS平台。
另外还有IBM公司,IBM宣布通过IBM Cloud、PowerAI on IBM POWER9、IBM Watson Studio以及Watson Machine Learning服务在私有云、公有云、混合云和多云环境中支持RAPIDS。与此同时,大数据公司Databricks也表示将使用RAPIDS加速Apache Spark工作负载。
Databricks联合创始人兼首席技术专家Matei Zaharia表示:“我们有多个正在进行的项目可以更好地将Spark与原生加速器集成,包括Apache Arrow支持和使用Project Hydrogen进行GPU调度。我们相信RAPIDS是一个令人兴奋的新机会,可以扩展客户的数据科学和人工智能工作负载。”
Nvidia表示,HPE、思科、戴尔和联想等厂商也将在自己的系统上支持RAPIDS。
Moor Insights&Strategy分析师Patrick Moorhead表示,Nvidia通过RAPIDS试图让那些对运行AI工作负载感兴趣的企业更容易访问GPU。
Moorhead表示:“Nvidia在获得AWS和Azure这样的超大规模数据中心厂商新任将深度学习和机器学习整合到他们的工作流方面取得了很大的成功。RAPIDS让企业更好地使用那些和IBM、HPE等厂商更容易实现Nvidia加速所使用的相同的功能。”
Constellation Research首席分析师兼副总裁Holger Mueller表示,如果能够做到这一点,Nvidia未来几年将会很好地主导市场上的人工智能工作负载。他说这一切都是为了创造出色的硬件和软件组合以优化加速这些工作负载, Nvidia RAPIDS平台是做到这一点的最好成果之一。
Mueller说:“从硬件方面看,对于Nvidia来说很明显它必须赢得开发人员和数据科学家的心,打造一个广泛采用的软件平台。RAPIDS是这一策略的一次重大尝试,但我们必须等待,看看开发人员、数据科学家以及最重要的CxO,他们是否能够对下一代应用平台做出决策。”
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。