Nvidia的GPU芯片已经成为机器学习蓬勃发展的基础,机器学习利用模拟大脑工作方式的软件,让计算机能够独立学习。GPU可以并行运行很多任务,这使其在语音和图像识别、电影推荐和自动驾驶汽车领域实现了一系列突破。
近日,Nvidia对其机器学习产品进行升级,推出一款新的数据中心芯片和软件,旨在加速这些服务并实现新的服务,例如人与机器之间更自然的语言交互。
特别是,这个名为TensorRT Hyperscale Inference Platform的平台专注于“推理”,也就是运行深度学习神经网络模型的过程。该模型基于得到的新数据来推断任务以及执行任务。与训练模型(通常需要更多处理能力)不同,推理通常要使用内部有标准CPU的服务器。
本周四在东京举行的Nvidia GPU技术大会上,Nvidia首席执行官黄仁勋及其高管宣布推出了这几款新产品。首先,他发布了名为Tesla T4的小型低功耗芯片,该芯片采用所谓的Turing Tensor Core设计用于推理。作为当前特斯拉P4的下一代,T4拥有2560个核心,每秒可运行高达260万亿次操作。
黄仁勋还宣布对TensorRT软件进行更新,该软件可让处理速度比CPU快40倍,它包括一个TensorRT 5推理优化器和Tensor RT推理服务器,一个软件“容器”中的微服务,可以运行主流的人工智能软件框架,并与容器编排器Kubernetes和Docker集成,后者可在Nvidia的GPU Cloud上使用。
Nvidia副总裁、加速业务总经理Ian Buck解释说,目前数据中心内有用于各种任务的软件,如图像识别、搜索和自然语言处理,因此效率不高。他说,Nvidia新推出的推理平台,让应用可以使用相同的架构和软件加速应用。例如,Google将把T4添加到其公有云中,主流服务器制造商表示他们也会使用这个平台。
例如Nvidia称,使用GPU进行推理已经帮助微软的Bing搜索引擎将延迟提高了60倍,SAP为广告客户提供的实时品牌影响信息提高了40倍。
在这次活动上,Nvidia还宣布推出了号称第一个用于自主机器(从汽车到机器人再到无人机)的AI计算平台。具体来说,有一款新的AGX嵌入式AI HPC系列服务器,该系列产品的部分包括用于数据中心的DGX系列和用于所谓的超大规模数据中心(如Google和Facebook)的HGX系列。
另一个新产品是Jetson AGX Xavier,这是Nvidia自主机器副总裁Rob Csongor所说的开发套件,是第一台用于机器人等应用的AI计算机。同时公布的合作伙伴包括建筑领域的Komatsu公司、自动船用和无人机车辆领域的Yamaha Motor公司以及工厂自动化视觉系统领域的佳能公司。Csongor说:“这是我们下一个大的市场,我们相信这将是变革性的。”
Nvidia还发布了一个关于AI推理市场看似不合理的数字:未来5年200亿美元。这可能有助于Nvidia在未来一段时间内继续保持长期好于预期的盈利结果。
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。