Nvidia的GPU芯片已经成为机器学习蓬勃发展的基础,机器学习利用模拟大脑工作方式的软件,让计算机能够独立学习。GPU可以并行运行很多任务,这使其在语音和图像识别、电影推荐和自动驾驶汽车领域实现了一系列突破。
近日,Nvidia对其机器学习产品进行升级,推出一款新的数据中心芯片和软件,旨在加速这些服务并实现新的服务,例如人与机器之间更自然的语言交互。
特别是,这个名为TensorRT Hyperscale Inference Platform的平台专注于“推理”,也就是运行深度学习神经网络模型的过程。该模型基于得到的新数据来推断任务以及执行任务。与训练模型(通常需要更多处理能力)不同,推理通常要使用内部有标准CPU的服务器。
本周四在东京举行的Nvidia GPU技术大会上,Nvidia首席执行官黄仁勋及其高管宣布推出了这几款新产品。首先,他发布了名为Tesla T4的小型低功耗芯片,该芯片采用所谓的Turing Tensor Core设计用于推理。作为当前特斯拉P4的下一代,T4拥有2560个核心,每秒可运行高达260万亿次操作。
黄仁勋还宣布对TensorRT软件进行更新,该软件可让处理速度比CPU快40倍,它包括一个TensorRT 5推理优化器和Tensor RT推理服务器,一个软件“容器”中的微服务,可以运行主流的人工智能软件框架,并与容器编排器Kubernetes和Docker集成,后者可在Nvidia的GPU Cloud上使用。
Nvidia副总裁、加速业务总经理Ian Buck解释说,目前数据中心内有用于各种任务的软件,如图像识别、搜索和自然语言处理,因此效率不高。他说,Nvidia新推出的推理平台,让应用可以使用相同的架构和软件加速应用。例如,Google将把T4添加到其公有云中,主流服务器制造商表示他们也会使用这个平台。
例如Nvidia称,使用GPU进行推理已经帮助微软的Bing搜索引擎将延迟提高了60倍,SAP为广告客户提供的实时品牌影响信息提高了40倍。
在这次活动上,Nvidia还宣布推出了号称第一个用于自主机器(从汽车到机器人再到无人机)的AI计算平台。具体来说,有一款新的AGX嵌入式AI HPC系列服务器,该系列产品的部分包括用于数据中心的DGX系列和用于所谓的超大规模数据中心(如Google和Facebook)的HGX系列。
另一个新产品是Jetson AGX Xavier,这是Nvidia自主机器副总裁Rob Csongor所说的开发套件,是第一台用于机器人等应用的AI计算机。同时公布的合作伙伴包括建筑领域的Komatsu公司、自动船用和无人机车辆领域的Yamaha Motor公司以及工厂自动化视觉系统领域的佳能公司。Csongor说:“这是我们下一个大的市场,我们相信这将是变革性的。”
Nvidia还发布了一个关于AI推理市场看似不合理的数字:未来5年200亿美元。这可能有助于Nvidia在未来一段时间内继续保持长期好于预期的盈利结果。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
MWS AI联合ITMO大学提出CoSpaDi技术,通过稀疏字典学习实现大型语言模型高效压缩。该方法突破传统低秩分解限制,为不同知识类型提供定制化存储方案,在20%-50%压缩比例下显著优于现有方法。支持跨层字典共享和数据感知优化,兼容量化技术,为移动设备和边缘计算部署大模型提供实用解决方案。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
莫斯科大学团队开发的TUN3D系统实现了重大技术突破,首次让普通相机拍摄的照片就能准确识别房间结构和物体位置。该系统无需专业3D扫描设备或精确位置信息,仅用手机拍摄的多角度照片即可重建完整3D场景模型。在多个标准数据集测试中均达到最佳性能,为房地产、室内设计、电商等领域带来革命性应用前景。