Tesla T4 GPU及全新TensorRT软件可助力实现智能语音、视频、图像和推荐服务
东京—GTC Japan—2018年9月13日—NVIDIA今日推出全新人工智能数据中心平台,为语音、视频、图像和推荐服务提供业界最先进的推理加速,从而推动全球AI服务的发展。
NVIDIA TensorRT超大规模推理平台采用基于突破性的NVIDIA Turing架构的NVIDIA Tesla T4 GPU,以及一整套完整的新推理软件。
该平台可为端到端应用提供最快性能和更低延迟,助力超大规模数据中心提供全新服务,例如增强型自然语言交互,以及对搜索查询的给出直接答案而非模糊匹配的一系列结果。
NVIDIA副总裁兼加速业务总经理Ian Buck表示:“未来人工智能将触及每种产品和服务并为之带来改进,我们的客户正在朝此方向发展。NVIDIA TensorRT超大规模平台的设计旨在实现这一目标,即比以往设想的更快、更高效。”
每天,大规模数据中心都会处理数以亿计的语音查询、翻译、图像、视频、推荐和社交媒体交互。所有这些应用的处理过程都需要在位于服务器上不同类型的神经网络进行。
为优化数据中心以实现最高吞吐量和服务器利用率,NVIDIA TensorRT超大规模平台包括实时推理软件和Tesla T4 GPU,处理查询的速度比仅采用CPU时快40倍。
NVIDIA预计AI推理行业有望在未来五年内平稳增长至200亿美元的市场。
NVIDIA TensorRT超大规模平台包括一整套硬件和软件产品,这些产品针对强大、高效的推理进行了优化。关键要素包括:
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。