在计算机视觉与模式识别(CVPR)大会上,NVIDIA宣布推出全新的数据增强库和图像解码库。
基于深度学习的计算机视觉应用程序包括复杂的多阶段预处理数据管道,该管道包括诸多计算密集型步骤,如:从磁盘加载和提取数据、解码、裁剪和调整大小、上色、空间转换和格式转换。
利用GPU加速数据增强,NVIDIA DALI解决了当今计算机视觉深度学习应用的性能瓶颈问题,这些应用程序一般会包括复杂的多阶段数据增强步骤。借助DALI,深度学习研究人员可以在图像分类模型上扩展训练性能,如:具备MXNet的ResNet-50、TensorFlow、适用于所有Amazon Web Services P3 8 GPU实例的PyTorch或带有Volta GPU的DGX-1系统。得益于各框架之间一致的高性能数据加载和增强,框架用户将大大减少代码重复的情况。
DALI依靠全新的NVIDIA nvJPEG库进行高性能的GPU加速解码。nvJPEG支持单一与批量图像的解码、颜色空间转换、多相位解码以及采用CPU和GPU的混合解码。与仅通过CPU的解码相比,采用nvJPEG解码的应用具有更高的吞吐量和更低的延迟率。
DALI的优势包括:
nvJPEG优势包括:
好文章,需要你的鼓励
在期末之际,OpenAI和谷歌向学生免费提供AI工具:前者短期内开放ChatGPT Plus,后者长期提供Google One AI Premium套件,助力高校数字化转型。
Together AI 最新升级其微调平台,支持浏览器零代码操作、直接偏好优化、续接先前训练任务并调整消息权重,同时新定价更低廉,旨在简化AI模型持续迭代。
本文介绍如何利用人工智能工具 ( 如 ChatGPT ) 来提升工作和家庭的任务效率,通过优化家务分配和数字化会议记录,实现微小节时也能带来显著改变。