在计算机视觉与模式识别(CVPR)大会上,NVIDIA宣布推出全新的数据增强库和图像解码库。
基于深度学习的计算机视觉应用程序包括复杂的多阶段预处理数据管道,该管道包括诸多计算密集型步骤,如:从磁盘加载和提取数据、解码、裁剪和调整大小、上色、空间转换和格式转换。
利用GPU加速数据增强,NVIDIA DALI解决了当今计算机视觉深度学习应用的性能瓶颈问题,这些应用程序一般会包括复杂的多阶段数据增强步骤。借助DALI,深度学习研究人员可以在图像分类模型上扩展训练性能,如:具备MXNet的ResNet-50、TensorFlow、适用于所有Amazon Web Services P3 8 GPU实例的PyTorch或带有Volta GPU的DGX-1系统。得益于各框架之间一致的高性能数据加载和增强,框架用户将大大减少代码重复的情况。
DALI依靠全新的NVIDIA nvJPEG库进行高性能的GPU加速解码。nvJPEG支持单一与批量图像的解码、颜色空间转换、多相位解码以及采用CPU和GPU的混合解码。与仅通过CPU的解码相比,采用nvJPEG解码的应用具有更高的吞吐量和更低的延迟率。
DALI的优势包括:
nvJPEG优势包括:
好文章,需要你的鼓励
Meta 正研发一项通过姓名识别人脸并追踪用户日常活动的“超级感知”技术,计划应用于新款智能眼镜和 AI 耳机,同时重新评估隐私策略,助推 AI 技术在穿戴产品中的应用。
Google 在 Gemini API 中推出自动缓存功能,通过复用重复数据为开发者节省最多 75% 的调用成本,有望缓解高额 API 费用问题。
Korl 利用 OpenAI、Gemini 及 Anthropic 等模型,从 Salesforce、Jira、Google Docs 等多个平台整合数据,自动生成定制化客户沟通材料,如幻灯片、演讲稿及季度业务回顾,同时保证数据安全性,并提升运营效率。
文章探讨了代理型 AI 的崛起,重点介绍微软 Azure AI Foundry 与 NVIDIA 技术如何通过强大语言模型和智能代理,实现企业级应用创新,提升运营效率与服务质量。