GPU在数据中心越来越受欢迎,它可以加速机器学习和深度学习等数据密集型工作负载。现在,全球最大的GPU制造商Nvidia将推出一个与Kubernetes集群配合使用的用例,以加速深度学习模型的训练。
Nvidia本周二表示,将发布Kubernetes on Nvidia GPUs的候选版本,可供开发人员免费使用。该版本是针对那些在多云GPU集群上训练深度学习模型的企业。
Nvidia 是在Computer Vision and Pattern Recognition大会上宣布推出Kubernetes on Nvidia GPUs的,此外还推出了新版本的推理优化工具和运行时引擎TensorRT,以及名为DALI的GPU数据增强和图像加载库,旨在优化深度学习框架的数据管道。
Nvidia表示,推出Kubernetes on Nvidia GPUs背后的想法是为了让软件容器编排平台更加“GPU感知”。Kubernetes on Nvidia GPUs针对的是运行人工智能应用的容器,将帮助开发人员更好地协调散步在多个云主机的GPU集群。
Moor Insights&Strategy创始人兼首席分析师Patrick Moorhead表示:“这很重要,因为Kubernetes托管的应用现在可以利用GPU的性能了。这在虚拟机上将实现比以前更高的可扩展性。”
就在Nvidia这次发布的几周之前,谷歌刚刚在其Kubernetes Engine平台上发布了一个测试版的GPU,旨在加速图像处理和机器学习工作负载。谷歌当时表示,这个云GPU可用于创建由Nvidia Tesla V100、P100和K80处理器驱动的Kubernetes节点池。
Nvidia的TensorRT推理加速器是针对推理模型的开发者。该工具集成了谷歌开源的TensorFlow机器学习框架,并增加了新的层和功能,以加强针对推荐系统、神经机器翻译、图像分类和语音识别等应用的推理。
至于DALI,这是一项为JPEG图像编码提供GPU加速库的服务,旨在解决基于视觉的深度学习应用中的性能瓶颈,目的是为了帮助扩展图像分类系统如PyTorch、TensorFlow和ResNet-50的训练。AWS的P3 8-GPU实例以及Nvidia自己的DGX-1深度学习系统上都将提供DALI。
“深度学习研究人员需要他们的管道是便携的,”Nvidia加速计算软件和AI产品总监Kari Briski说。
好文章,需要你的鼓励
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。