GPU在数据中心越来越受欢迎,它可以加速机器学习和深度学习等数据密集型工作负载。现在,全球最大的GPU制造商Nvidia将推出一个与Kubernetes集群配合使用的用例,以加速深度学习模型的训练。
Nvidia本周二表示,将发布Kubernetes on Nvidia GPUs的候选版本,可供开发人员免费使用。该版本是针对那些在多云GPU集群上训练深度学习模型的企业。
Nvidia 是在Computer Vision and Pattern Recognition大会上宣布推出Kubernetes on Nvidia GPUs的,此外还推出了新版本的推理优化工具和运行时引擎TensorRT,以及名为DALI的GPU数据增强和图像加载库,旨在优化深度学习框架的数据管道。
Nvidia表示,推出Kubernetes on Nvidia GPUs背后的想法是为了让软件容器编排平台更加“GPU感知”。Kubernetes on Nvidia GPUs针对的是运行人工智能应用的容器,将帮助开发人员更好地协调散步在多个云主机的GPU集群。
Moor Insights&Strategy创始人兼首席分析师Patrick Moorhead表示:“这很重要,因为Kubernetes托管的应用现在可以利用GPU的性能了。这在虚拟机上将实现比以前更高的可扩展性。”
就在Nvidia这次发布的几周之前,谷歌刚刚在其Kubernetes Engine平台上发布了一个测试版的GPU,旨在加速图像处理和机器学习工作负载。谷歌当时表示,这个云GPU可用于创建由Nvidia Tesla V100、P100和K80处理器驱动的Kubernetes节点池。
Nvidia的TensorRT推理加速器是针对推理模型的开发者。该工具集成了谷歌开源的TensorFlow机器学习框架,并增加了新的层和功能,以加强针对推荐系统、神经机器翻译、图像分类和语音识别等应用的推理。
至于DALI,这是一项为JPEG图像编码提供GPU加速库的服务,旨在解决基于视觉的深度学习应用中的性能瓶颈,目的是为了帮助扩展图像分类系统如PyTorch、TensorFlow和ResNet-50的训练。AWS的P3 8-GPU实例以及Nvidia自己的DGX-1深度学习系统上都将提供DALI。
“深度学习研究人员需要他们的管道是便携的,”Nvidia加速计算软件和AI产品总监Kari Briski说。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。