GPU在数据中心越来越受欢迎,它可以加速机器学习和深度学习等数据密集型工作负载。现在,全球最大的GPU制造商Nvidia将推出一个与Kubernetes集群配合使用的用例,以加速深度学习模型的训练。
Nvidia本周二表示,将发布Kubernetes on Nvidia GPUs的候选版本,可供开发人员免费使用。该版本是针对那些在多云GPU集群上训练深度学习模型的企业。
Nvidia 是在Computer Vision and Pattern Recognition大会上宣布推出Kubernetes on Nvidia GPUs的,此外还推出了新版本的推理优化工具和运行时引擎TensorRT,以及名为DALI的GPU数据增强和图像加载库,旨在优化深度学习框架的数据管道。
Nvidia表示,推出Kubernetes on Nvidia GPUs背后的想法是为了让软件容器编排平台更加“GPU感知”。Kubernetes on Nvidia GPUs针对的是运行人工智能应用的容器,将帮助开发人员更好地协调散步在多个云主机的GPU集群。
Moor Insights&Strategy创始人兼首席分析师Patrick Moorhead表示:“这很重要,因为Kubernetes托管的应用现在可以利用GPU的性能了。这在虚拟机上将实现比以前更高的可扩展性。”
就在Nvidia这次发布的几周之前,谷歌刚刚在其Kubernetes Engine平台上发布了一个测试版的GPU,旨在加速图像处理和机器学习工作负载。谷歌当时表示,这个云GPU可用于创建由Nvidia Tesla V100、P100和K80处理器驱动的Kubernetes节点池。
Nvidia的TensorRT推理加速器是针对推理模型的开发者。该工具集成了谷歌开源的TensorFlow机器学习框架,并增加了新的层和功能,以加强针对推荐系统、神经机器翻译、图像分类和语音识别等应用的推理。
至于DALI,这是一项为JPEG图像编码提供GPU加速库的服务,旨在解决基于视觉的深度学习应用中的性能瓶颈,目的是为了帮助扩展图像分类系统如PyTorch、TensorFlow和ResNet-50的训练。AWS的P3 8-GPU实例以及Nvidia自己的DGX-1深度学习系统上都将提供DALI。
“深度学习研究人员需要他们的管道是便携的,”Nvidia加速计算软件和AI产品总监Kari Briski说。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。