NetApp和Nvidia已经推出了一个组合式的AI参考架构系统,与Pure Storage和Nvidia 合作的AIRI系统相竞争。
这款系统主要针对深度学习,与FlexPod(思科和NetApp合作的融合基础设施)不同,这款系统没有品牌名称。而且与AIRI不同的是,它也没有自己的机箱封装。
NetApp和Nvidia技术白皮书《针对实际深度学习用例的可扩展AI基础设施设计》定义了一个针对NetApp A800全闪存存储阵列和Nvidia DGX-1 GPU服务器系统的参考架构(RA)。此外还有一个速度慢一些的,成本更低的、基于A700阵列的参考架构。
高配的参考架构支持单个A800阵列(高可用性配对配置),5个DGX-1 GPU服务器,连接2个思科Nexus 100GbitE交换机。速度较慢的A700全闪存阵列参考架构支持4个DGX-1和40GbitE。
A800系统通过100GbitE链路连接到DGX-1,支持RDMA作为集群互连。A800可横向扩展为24节点集群和74.8PB容量。
据说A800系统可实现25GB /秒的读取带宽和低于500微秒的延迟。
NetApp Nvidia DL参考架构配置图
Pure Storage和Nvidia的AIRI有一个FlashBlade阵列,支持4个DGX-1。FlashBlade阵列提供17GB /秒的速度,低于3毫秒的延迟。这与NetApp和Nvidia合作的参考架构系统相比似乎较慢,但A800是NetApp最快的全闪存阵列,而Pure的FlashBlade则更多地是一款容量优化型闪存阵列。
和Pure AIRI Mini一样,NetApp Nvidia DL RA可以从1个DGX-1起步,扩展到5个。 A800的原始容量通常为364.8TB,Pure的AIRI原始闪存容量为533TB。
AIRI RA配置图如下所示:
Pure Nvidia AIRI配置图
NetApp和Pure都对他们的这两个系统进行了基准测试,并且都包含Res-152和ResNet-50运行使用合成数据、NFS和64批量大小。
NetApp提供了图表和数据,而Pure只提供图表,所以对比起来有点困难。不过,我们可以通过将这些图表放在一起做个粗略的估计。
合成的总图表并不漂亮,不过确实提供了一些对比:
NetApp和Pure Resnet性能对比
至少从这些图表可以看出,NetApp Nvidia RA的性能优于AIRI,但让我们吃惊的是,由于NetApp/Nvidia DL系统与Pure AIRI系统相比具有更高的带宽和更低的延迟,分别是25GB/s的读取带宽和低于500微秒以下,后者分别17GB/s和低于3毫秒。
价格对比很好,但没有人透露给我们这方面的数据。我们猜测Nvidia可能会宣布更多深度学习方面的合作伙伴关系,就像NetApp和Pure这样的。HPE和IBM都是很明显的候选对象,还有像Apeiron、E8和Excelero等NVMe-oF这样的新兴阵列初创公司。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。