NetApp和Nvidia已经推出了一个组合式的AI参考架构系统,与Pure Storage和Nvidia 合作的AIRI系统相竞争。
这款系统主要针对深度学习,与FlexPod(思科和NetApp合作的融合基础设施)不同,这款系统没有品牌名称。而且与AIRI不同的是,它也没有自己的机箱封装。
NetApp和Nvidia技术白皮书《针对实际深度学习用例的可扩展AI基础设施设计》定义了一个针对NetApp A800全闪存存储阵列和Nvidia DGX-1 GPU服务器系统的参考架构(RA)。此外还有一个速度慢一些的,成本更低的、基于A700阵列的参考架构。
高配的参考架构支持单个A800阵列(高可用性配对配置),5个DGX-1 GPU服务器,连接2个思科Nexus 100GbitE交换机。速度较慢的A700全闪存阵列参考架构支持4个DGX-1和40GbitE。
A800系统通过100GbitE链路连接到DGX-1,支持RDMA作为集群互连。A800可横向扩展为24节点集群和74.8PB容量。
据说A800系统可实现25GB /秒的读取带宽和低于500微秒的延迟。
NetApp Nvidia DL参考架构配置图
Pure Storage和Nvidia的AIRI有一个FlashBlade阵列,支持4个DGX-1。FlashBlade阵列提供17GB /秒的速度,低于3毫秒的延迟。这与NetApp和Nvidia合作的参考架构系统相比似乎较慢,但A800是NetApp最快的全闪存阵列,而Pure的FlashBlade则更多地是一款容量优化型闪存阵列。
和Pure AIRI Mini一样,NetApp Nvidia DL RA可以从1个DGX-1起步,扩展到5个。 A800的原始容量通常为364.8TB,Pure的AIRI原始闪存容量为533TB。
AIRI RA配置图如下所示:
Pure Nvidia AIRI配置图
NetApp和Pure都对他们的这两个系统进行了基准测试,并且都包含Res-152和ResNet-50运行使用合成数据、NFS和64批量大小。
NetApp提供了图表和数据,而Pure只提供图表,所以对比起来有点困难。不过,我们可以通过将这些图表放在一起做个粗略的估计。
合成的总图表并不漂亮,不过确实提供了一些对比:
NetApp和Pure Resnet性能对比
至少从这些图表可以看出,NetApp Nvidia RA的性能优于AIRI,但让我们吃惊的是,由于NetApp/Nvidia DL系统与Pure AIRI系统相比具有更高的带宽和更低的延迟,分别是25GB/s的读取带宽和低于500微秒以下,后者分别17GB/s和低于3毫秒。
价格对比很好,但没有人透露给我们这方面的数据。我们猜测Nvidia可能会宣布更多深度学习方面的合作伙伴关系,就像NetApp和Pure这样的。HPE和IBM都是很明显的候选对象,还有像Apeiron、E8和Excelero等NVMe-oF这样的新兴阵列初创公司。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。