当地时间,5月21日,浪潮在2018 OpenStack温哥华峰会上正式发布全新InCloud OpenStack 5.5,融合最新的容器技术实现了OpenStack的容器化部署,在规模化部署、简单易用和智能化运维上带来更出色的表现,帮助全球云计算用户更好的构建先进的云基础设施。
此次InCloud OpenStack 5.5海外首发,OpenStack基金会执行总裁Jonathan受邀出席了本次新品发布会,并对新品和浪潮在社区的贡献给予了高度认可。Jonathan表示:作为OpenStack基金会黄金会员的浪潮,对于OpenStack 的贡献在逐年增加,有很多来自浪潮的专家投入到OpenStack中,为数十个的不同项目做出了贡献,浪潮从市场和技术两个维度都为OpenStack做出了很大贡献。
在云计算已成为智慧时代基础设施的当下,浪潮通过与自身服务器、存储产品体系的深度融合,凭借完整的计算虚拟化、软件定义存储、软件定义网络产品体系及整体交付能力,致力于为用户交付敏捷、开放、融合、安全的软硬一体化云基础设施。
峰会现场,浪潮集团副总裁Jay Zhang出席InCloud OpenStack 5.5发布仪式并发表精彩演讲,据Jay Zhang介绍:最新发布的产品更加强调敏捷交付与大规模部署,可满足行业用户对于大规模部署稳定运行、智能化运维、两地三中心等诉求,进一步显示出浪潮持续优化InCloud OpenStack原生产品的创新能力,以及基于行业实践和面向未来的技术发展洞察。
InCloud OpenStack在安装部署方面,基于容器化技术封装各个组件为独立于宿主操作系统的容器化镜像,依靠统一分发实现一键式批量部署。基于数据可视化组件,实现服务编排可视化拖拽,可基于系统模板或自定义拖拽创建编排模板,通过所见即所得的方式完成资源的编排,提升用户友好度。
InCloud OpenStack 5.5架构图
InCloud OpenStack 5.5基于OpenStack架构实现了虚拟机、裸机、容器三种计算资源的同平台统一管理和对外提供服务,进行三种资源的并行调度,实现集计算、存储和网络资源的融合共享,降低运维与管理成本。
针对虚拟机服务支持自定义RAID、支持多租户、裸金属与VPC内的虚拟机互通等,有效提升系统性能及灵活性。针对容器高效部署和管理K8S集群,支持容器应用的自动化部署、容器镜像管理、服务目录管理、监控和弹性伸缩以及容器的持久化存储等功能。
目前,随着稳定性、易用性以及集成友好度的显著提升,OpenStack从测试环境到生产环境的转变速度越来越快,但大规模部署依然对OpenStack的管理及稳定运行带来挑战。浪潮InCloud OpenStack 5.5为了满足大规模数据中心交付能力,从两个维度对原生OpenStack产品进行了优化。一方面,采用多Region方式实现大集群的分而治之,所有的Region使用一套Keystone系统,解决因集群规模扩大而带来keystone系统瓶颈,从独立部署Keystone和Token认证两个维度进行优化;另一方面,为了增加单Region的集群规模,采用分离方案对数据库、消息通信机制进行优化,使得单集群规模大于1000+节点。
InCloud OpenStack 两地三中心方案可对外提供同城150KM双中心双活,异地数据中心主备的容灾能力;方案采用浪潮自研的网络设备、集中式存储设备和云管理平台可以从数据、网络、业务层面稳定高效的保证客户业务连续性。该方案可以有效的帮助客户节约成本、提高业务高可靠、采用可视化一键式故障切换方案实现高效故障管理等能力。
目前,基于InCloud OpenStack 5.5的“两地三中心”云数据中心解决方案已成功交付,帮助客户构建起单集群超过1000节点、总规模达1400+节点的全球领先云基础设施。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。