英特尔冀打造现代数据中心基础,为迅猛的数据增长提供解决方案,用的不是更强大的CPU功能,而是现场可编程门阵列(FPGA)加速器。
英特尔的基本思想是将旗下用了Arria 10 GX FPGA的Xeon服务器处理器与用了FPGA的英特尔至强CPU加速堆栈合在一起,达到提升性能和能效的目的。
据悉,戴尔EMC和富士通两家大型服务器原始设备制造商也加入了进来 ,戴尔EMC增加了R640、R740和R740xd对FPGA 的支持,富士通则为PRIMERGY RX2540 M4服务器优先客户提供早期访问权。
英特尔的重点放在财务风险分析和数据库加速两种特殊的工作负载上,这些工作负载将直接从配备了FPGA的服务器中受益。
在提高数据库性能方面,英特尔认为FPGA可在系统链的两个阶段(提取、转换、加载阶段和分析阶段)提高性能,进而使实时数据的复杂分析成为现实。
对于那些喜欢测试基准的人来说,英特尔宣称FPGA的实时数据分析速度提高了20倍,存储压缩比则提高了3倍以上。
利用FPGA提高数据库性能
英特尔可编程解决方案部市场副总裁Reynette Au表示,”戴尔EMC和富士通在主流服务器产品中用上英特尔FPGA的强大功能和灵活性,数据中心计算新时代即将到来。 我们为我们的客户和合作伙伴交付硬件性能优势, 令客户能够在软件开发环境中大规模地创建一系列丰富的高性能解决方案。”
除数据分析之外,英特尔认为人工智能、网络安全、视频转码和基因组学也可以从FPGA受益。
英特尔Arria 10 FPGA基于20纳米ARM Cortex-A9 SoC,可提供1.5 TFLOPS的DSP性能,配有96个3.3 Tbps串行带宽的收发器通道,功耗比上一代FPGA低40%。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。