对于人工智能的粉丝和采用者来说,2017年是令人兴奋的一年。进入2018年,我们想看看未来将要发生什么。有一件事是肯定的:我们刚刚开始这个旅程,今后一年会有很大的成功以及巨大的失败。在进行预测之前,对2017年人工智能领域进行梳理可能会有所帮助。让我们先来简短地看看,过去一年里人工智能领域发生了哪些事情。
2017年人工智能芯片的10件大事
1、NVIDIA数据中心业务继续超出最高期望值,实现三位数的增长,达到约15亿美元的收入运行率。
2、NVIDIA凭借用于机器学习的NVIDIA Volta V100 GPU和云服务令市场震惊,TensorCores-6X每秒运算速度达到125万亿次,其性能是一年前推出的PASCAL的6倍。
3、NVIDIA还宣布推出自己的Deep Learning ASIC,将其纳入该公司下一代DrivePX汽车平台。如承诺的那样,NVDIA在第三季度以开源技术的形式发布了该规范。
4、AMD推出了AI GPU和软件Vega Frontier Edition。AMD宣布赢得了一些大型的部署,其中包括用于百度选用AMD的GPU,以及微软Azure选用AMD的EPYC CPU。
5、Google发布了自己的用于人工智能深度学习训练的ASIC芯片——Cloud TensorFlow Prcessing Unit,每个裸片提供45个TeraOps,4裸片的180 TeraOps卡用于其数据中心和云服务中。这一消息引发了人们对ASIC可能对NVIDIA统治地位造成威胁的猜测。
6、微软宣布其内部使用英特尔Altera FPGA机器学习和其他应用取得了令人印象深刻的结果。这也提高赛灵思在数据中心的预期。说起来...
7、Amazon.com AWS宣布了针对(赛灵思提供驱动的)F1实例的AWS Marketplace Solutions,用于应用加速(用于视频、基因组学、分析和机器学习)。百度,华为等公司也加入了赛灵思FPGA这股潮流。
8、英特尔错过了Nervana Engine产品发布这一里程碑,后者在2016年被英特尔收购。
9、英特尔取消了Knights Hill Xeon Phi芯片,不是因为标准至强处理器已经很好了,就是因为英特尔计划将其人工智能转移到Nervana。毫无疑问,能够大幅节省开发费用是最终的决定性因素。
10、最后,为人工智能挑战NVIDIA而开发的ASIC数量急剧增长,其中包括六家中国初创公司、六家美国风险投资公司以及其他几家大公司(包括高通、华为和东芝)。
2018年人工智能芯片的10大预测
现在,让我们继续对2018年进行一下预测,我们会用高、中、低概率来压下我的赌注。
1、谷歌将宣布其TPU用于Google Compute Cloud中,以及推出新的API和工具服务,以更好地与微软和亚马逊在机器学习即服务方面展开竞争。(高概率)
2、英特尔最终将在第二季度或者第三季度推出Nervana引擎。在KNH取消之后,要在这个高速增长的市场站稳脚跟,英特尔就不能再犹豫等待了。然而,我怀疑英特尔会利用这个芯片的片上结构,因为它想要销售尽可能多的至强芯片——真心希望为了英特尔,后一点是错误的。(高概率)
3、NVIDIA将预发布Volta的下一代芯片。Volta才推出没多久,仍然领先于现有的其他忍心芯片,所以下一代芯片有可能会到11月份的SC'18才公布,而不是今年3月份的GTC。 (中概率)
4、赛灵思将至少赢得一位人工智能推断的知名客户,但是我认为不太可能是微软。(高概率)
5、虽然2017年是数据中心人工智能的一年,但2018年人工智能的发展势头迅猛,物联网等边缘应用势头良好。这对NVIDIA来说是至关重要的,因为它需要在边缘保持领先地位。 (中概率)
6、虽然戴尔,惠普和联想都提出了新的基础设施来支持人工智能,但是企业采用人工智能将会延续到2019年或更晚。(高概率)
7、至少会有一家ASIC初传该公司被收购,例如Wave Computing、Cerebras或Groq。收购方是系统业务厂商和原始设备制造商要比NVIDIA或英特尔更为合理一些。(中概率)
8、NVIDIA将为机器学习带来全面的ASIC产品(不仅仅是开源的DLA逻辑)。2018年,我认为这个概率很低,因为我不认为NVIDIA到2019年才会意识到Google TPU等ASIC的威胁。不过,黄仁勋并不是等到威胁真正来临的时候才开始行动的人。
9、2018年底,至少有一家中国大型云供应商(百度、腾讯或阿里巴巴)将从众多的中国ASIC初创厂商中收购一家。(中概率)
10、虽然AMD的EPYC CPU将在数据中心赢得巨大的关注,但AMD将很难在的人工智能GPU中赢得显著的(两位数)市场份额。AMD的高端Vega GPU仍然比NVIDIA Volta落后一代,建立一个生态系统需要时间。2018年AMD将非常专注于把APU推向市场。(高概率)
好文章,需要你的鼓励
这篇研究介绍了KVzip,一种创新的查询无关KV缓存压缩方法,通过上下文重建机制为大型语言模型提供高效存储解决方案。该技术能将KV缓存大小减少394倍,同时提高解码速度约2倍,在各种任务上性能几乎不受影响。不同于传统查询相关的压缩方法,KVzip创建可在多种查询场景下重用的通用压缩缓存,特别适合个性化AI助手和企业信息检索系统。研究在LLaMA3.1-8B、Qwen2.5-14B和Gemma3-12B等多种模型上进行了验证,处理长度高达17万词元的文本,并能与KV缓存量化等其他优化技术无缝集成。
腾讯与上海交通大学联合推出的DeepTheorem研究突破了大型语言模型在数学定理证明领域的限制。该项目创建了包含12.1万个IMO级别非形式化定理的大规模数据集,开发了专门的RL-Zero强化学习策略,并设计了全面的评估框架。研究表明,通过使用自然语言而非传统形式化系统,即使是7B参数的模型也能在复杂定理证明上取得显著成果,超越许多更大的专业模型。这一成果为AI数学推理开辟了新途径,使语言模型能够像人类数学家一样思考和证明。
MAGREF是字节跳动智能创作团队开发的多主体视频生成框架,能从多张参考图像和文本提示生成高质量视频。该技术引入了区域感知动态遮罩机制,使单一模型灵活处理人物、物体和背景,无需架构变化;并采用像素级通道拼接机制,在通道维度上运作以更好地保留外观特征。实验表明,MAGREF在身份一致性和视觉质量方面优于现有技术,能将单主体训练泛化到复杂多主体场景,为内容创作者提供了强大而便捷的视频生成工具。
这项研究揭示了大型语言模型(LLMs)偏好决策的内在机制。以色列理工学院和IBM研究院的团队开发了一种自动化方法,不需人工预设即可发现和解释影响AI判断的关键概念。研究横跨八个领域(从一般问答到安全评估),分析了12种偏好机制,发现人类评判者重视权威性和清晰度,而AI评判更关注事实准确性。他们提出的层次多领域回归模型不仅能准确预测偏好,还能清晰解释判断过程,为构建更透明、更符合人类价值观的AI系统提供了新途径。