IBM公司在本月早些时候于纽约召开的AI纽约峰会上指出,其POWER 9方案在支持AI以实现“认知”工作能力方面优于通用或专用型X86商业现成(简称COTS)工具。
蓝色巨人最近公布了一项“演示”,据称其能够利用自有专有服务器配合低延迟/高带宽技术接入FlashSystem阵列——例如PCIe Gen 4、EDR与QDR InfiniBand以及NVMe over Fabrics,从而在性能表现上将COTS服务器及存储方案远远甩在身后。
当然,E8、Excelero、Pavilion以及Farmation Data Systems等初创企业都已经在推出NVMe over Fabrics访问型存储阵列,而Pure Storage也有意作出尝试——这一切都能够支持立足X86服务器的访问能力。
另外,IBM公司在展示中还使用了NVMe over Fabrics InfiniBand(简称NVMe-oF)。IBM公司并没有正式公布在AC922服务器或者FlashSystem 900阵列上支持NVMe-oF协议,但从目前的技术预览来看确有这种可能。
此次展示于今年12月5日到6日召开的AI纽约峰会上正式亮相。荐AC922采用PCIe第四代总线,速度是目前大多数服务器所使用的PCIe第三代总线的两倍。
IBM公司还向与会者们展示了基于POWER 9的AC922与五台FlashSystem 900阵列利用NVMe-oF实现对接的预览方案,并表示其能够有效降低数据访问延迟并提升传输带宽。
蓝色巨人Flashsystem产品组合与赋能战略经理Woody Hutsell在博文中指出,这台AC922服务器“能够将I/O数据吞吐能力提升至目前x86服务器内所使用的PCIe第三代总线的5.6倍。”
IBM公司表示,其将成为AI实现方案的理想之选——其能够摄取“海量数据,同时完成实时推理(对象检测)。”
Hutsell表示,FlashSsytem 900已经能够利用InfiniBand连接支持SRP(即SCSI over RDMA协议),并可将SCSI代码替换为NVMe代码以进一步降低延迟水平。
IBM公司在技术预览中使用的硬件配置。
在展示中,AC922服务器通过一个双閊NVMe-oF EDR 100Gbit Mellanox适配器接入一台Mellanox Switch-IB 2 7800交换机——后者又接入五台FlashSystem 900阵列,每台阵列配有4个每秒40 Gbit QDR InfiniBand端口。
这套配置可提供每秒41 GB总传输带宽,其中读取与写入能力最高可分别达到每秒23 GB与每秒18 GB。不过IBM方面并没有给出访问延迟数据。
IBM公司指出,POWER 9服务器加FlashSystem 900/NVMe-oF InfiniBand的组合能够为企业AI提供必需的低延迟与高传输带宽,意味着其在性能表现上要优于采用NVMe连接的其它一切x86服务器加闪存存储阵列方案。然而由于延迟数字尚未提供,这样的结论似乎很难令人信服。
Excelero公司为美国宇航局艾姆斯实验室打造的一套NVMe over Fabrics虚拟SAN系统可为4K IOPS提供平均199微秒的延迟水平,其最低延迟甚至仅为8微秒。这套系统的传输带宽在1 MB存储块大小的情况下可超过每秒140 GB。
该系统拥有128个计算节点,因此不能直接与IBM公司演示的单服务器进行比较。尽管如此,我们还是能够借此发现一些端倪,也许某家至强SP服务器供应商会采用PCIe第四代总线、NVMe over Fabrics外加每秒100 Gbit以太网连接全闪存阵列系统来观察所能达到的性能峰值。
好文章,需要你的鼓励
这篇研究揭示了大语言模型强化学习中的"熵崩塌"现象——模型在训练早期迅速失去探索能力,导致性能达到可预测的上限。研究者发现验证性能和策略熵之间存在精确的数学关系:R = -a·exp(H) + b,并深入分析了熵变化的内在机制。基于这些发现,他们提出了两种简单有效的方法(Clip-Cov和KL-Cov)来缓解熵崩塌问题,显著提升了模型性能,特别是在困难任务上。这项研究为大模型强化学习的规模化应用提供了关键指导。
Skywork OR1是昆仑公司AI团队开发的开源推理大模型,通过创新的强化学习方法显著增强了语言模型的推理能力。该研究基于DeepSeek-R1-Distill模型系列,采用名为MAGIC的训练方法,在AIME24、AIME25和LiveCodeBench三大基准测试中实现了显著性能提升,32B模型平均准确率提高15.0%,7B模型提高13.9%。研究团队通过系统研究策略熵崩塌现象,提出了有效的缓解策略,并开源了全部代码、数据和模型权重,为AI社区提供了宝贵资源。
上海交通大学研究团队发现多模态大语言模型中的"啊哈时刻"(自我反思模式)虽存在但并不意味着推理能力提升。他们提出了"冷启动强化学习"两阶段方法:先用监督微调建立推理模式,再通过强化学习优化。实验表明,这种方法在多个多模态数学推理基准上表现卓越,使3B参数模型达到接近甚至超越部分7B模型的性能,为增强多模态AI推理能力提供了有效路径。
MBZUAI研究团队开发的SVRPBench是首个模拟真实物流环境的随机车辆路径问题基准测试平台。它通过建模时间依赖的交通拥堵、概率性延误和客户特定时间窗口,为500多个包含最多1000客户的测试实例注入真实世界的不确定性。实验结果显示,先进的强化学习算法在分布变化时性能下降超过20%,而传统方法表现更为稳健。该开源平台通过GitHub和Hugging Face发布,旨在推动更适应现实世界不确定性的路由算法研究。