为虚拟机提供绝佳隔离效果,同时亦延伸至更为广泛的ARM服务器领域。
Xen项目已经发布其虚拟机管理程序的4.10版本。
项目维护负责人Julien Grail写道,“正如Xen 4.9一样,我们在Xen 4.10中同样坚持以安全为中心的原则,投入大量精力提升代码质量并强化安全性水平。”
“这不可避免地会放慢我们对新功能的接受度,自然也推迟了版本发布的速度; 但我们相信,我们已经在成熟的安全实践与创新之间找到了有意义的平衡点。”
那么新版本带来哪些新惊喜?首先是在选定CPU上运行虚拟机的能力,以及提供一种更好的方式“在处理器上表达vCPU的位置偏好,从而在适当配置条件下提升缓存与内存性能。”
虚拟机内省机制得到增强,特别是“在ARM上为虚拟机添加了软件页表walker,其为ARM CPU的引入打下了良好的基础。”
新的UI则允许用户轻松实现“对特定引导参数的修改,而无需重新引导Xen。”
根据该项目最新版本发布内容的说明,“目前可通过配置文件中的类型选项选择访客类型,其中用户可以选择PV、PVH或者HVM访客。”
对系统芯片的支持能力也已经得到增强,目前其可支持64位ARMv8-A架构高通Centriq 2400与Cavium ThunderX芯片。由于二者皆属于服务器架构,因此Xen显然已经决定为市场上可能陆续出现的ARM支持型服务器作好准备。
不过此次发布的新版本也同时增加了在微型服务器上运行二级缓存分配技术(简称CAT)的支持能力,而这项技术为英特尔CPU所独有。因此,Xen项目明显不会在ARM上押下全部赌注。
感兴趣的朋友可以点击此处查看完整的版本说明,亦可点击此处参阅如何访问并构建这套最新发行版。
如果大家此前已经注意到美国国家安全局曾经为Xen项目贡献大量代码,那么这一次同样不例外——国安局方面继续被列入贡献者名单之内。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。