至顶网服务器频道 12月06日 新闻消息:就在宣布计划开发新版本Power系列处理器的近20个月之后,IBM近日推出了首款基于这个新芯片的设备,并表示它是计算密集型人工智能工作负载的最佳选择。
最新基于Linux的AC922 Power Systems可以加速深度学习训练时间,缩短4倍。除了处理器的性能提升之外,该系统还采用了最新的PCIe 4.0扩展总线、Nvidia NVLink 2.0高速互连以及OpenCapi——一种用于将微处理器与内存、加速器、IO设备以及其他处理器的接口架构。IBM表示,这种组合能让性能提升10倍。
Pund-IT总裁、首席分析师Charles King表示:“Power9在迁移数据方面是绝对出色的,这对以AI为中心的流程来说至关重要。因为AI依赖于数千次反复进行的深度学习练习,所以Power9系统可以减少大量时间。”
AC 922服务器采用2个Power9处理器,最多6个由NVLink接口连接的Nividia GPU。“这对任何加速工作负载来说都是非常棒的,”IBM洪高性能计算、人工智能和机器学习副总裁Sumit Gupta这样表示。
“机器学习数据集是巨大的,我们把数据迁移到加速器上的速度要远远快于迁移到英特尔系统上。”IBM表示,Power9将是美国能源部“Summit”和“Sierra”超级计算机的核心。
IBM最近经常提及摩尔定律曲线的终结,该定律称处理器密度每年会翻一番,持续超过50年。随着CPU速度缓慢提高,系统制造商一直在寻找诸如GPU等外部加速器来提升性能。这就是为什么引入PCIe 4.0和NVLink 2.0很重要的原因。NVLink 2.0可以的通信性能可以达到每秒25千兆比特,这是英特尔x86系统中采用PCIe 3.0速度的7到10倍。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“Power9就像是瑞士军刀版的AI加速器。你可以接入地球上性能最高的加速器,配置连贯的内存,这意味着加速器可以直接访问系统内存。”
使用协同处理器可以使用板载加速器上并行运行任务来提升整体性能,但是CPU制造了一个瓶颈。他说:“最大的问题就是数据通过网络到达CPU内存,每个加速器也有它自己的内存,这样你需要将数据迁移到加速器。”
每个GPU有16GB的内存,CPU和GPU之间的带宽速度影响整体性能。Gupta表示:“从本质上讲,Power9有三个接口可加速连接到其他设备以及连接到存储级内存的速度。”
NVLink 2.0是其中最重要的,Moorhead表示。“首先增加PCIe是一个很大的提升,但是我相信增加NVLink会更加显著。这让企业在同一台服务器上使用多个GPU获得性能和一致性的优势。”
IBM在4年前成立了OpenPower联盟,旨在取代英特尔的主导地位,专注于协作开发和高性能系统。该组织吸引了包括Google在内的300多名成员,但是并没有对英特尔的市场份额产生重大影响。Google在2016年春季宣布计划在Power9芯片的基础上构建一个新的服务器,但自那之后,却鲜少有对该项目的描述。
IBM表示,Power9是对酝酿4年的处理器家族的重建。有一系列系统计划在2018年公布,但IBM没有提供具体细节。Pund-IT公司的King表示,这是值得等待的,Power9是一个“AI巨擎。如果Power9和IBM相关系统如期供货的话,那将给很多AI项目和计划带来重要影响”。
IBM并没有透露定价,但是Gupta表示,成本与x86系统相比是有竞争力的。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。