至顶网服务器频道 11月22日 新闻消息(文/刘新萍): 人工智能(AI)并不是一个新概念,在其超过60年的发展史中经过了三起三落,过程可谓跌宕起伏。早在上世纪50年代就已经被学术界提出来,第一代神经网络Perceptron的发明也将AI推向第一个高峰,但计算能力的缺乏导致系统没有能力完成大规模的训练和复杂任务,并在1970年左右进入低谷。1986年BP算法出现,使大规模神经网络训练成为可能,在当时主要研究机构DARPA的推动下,AI进入了第二个黄金时期,并开始致力于语音识别和图像理解。此后,受限于其准确率,相关技术迟迟未能形成大规模应用,陷入第二个低潮期。在2006年后,深度学习和云计算技术的应用,使智能算法性能获得了突破性进展。在2016年,以谷歌AlphaGo战胜世界围棋冠军李世石为标志,AI进入了第三个黄金期。而随着996发文和平安城市建设的深入,公共安全成为AI落地商用的主要领域之一。多家创业公司获得大量资金投入,包括商汤、依图等业内顶尖专业算法厂商,总计获得了超过50亿人民币的投资。随着政策的重视和资金的注入,相关算法也进入了快速更新换代的高速发展期。以人脸识别为例,3年前还仅应用于静态识别,如1:1人证比对、1比多的身份证查找等。如今在很多城市已经在试点动态识别,并产生了一定的实战效果。可以预见,未来会出现每隔1-2年准确率上升一个台阶,每隔2-3年产生新的识别内容。
换个角度从实战业务来看,技战法是实战业务的核心。技战法的总结和传承,是向科技要警力非常重要的落脚点。支撑技战法的应用系统通常追求稳定,以减少用户的学习成本,传承经验,提升操作效率。那么,智能算法的快速更新换代和技战法的稳定传承在一定程度上,就将产生矛盾。同时,随着视频数据规模越来越大,对算力的需求也越来越强。一次性投资建设一个能满足未来所有算力需求的硬件基础设施,无疑是不现实的。这意味着,一个对上接口稳定,对下可灵活更新算法、扩展和分配算力的基础平台就成为了项目建设成功的关键因素。传统的视频监控平台,通常是软件与硬件绑定,数据与系统绑定,算法与应用绑定,无法解决这一矛盾,建成就意味着进入淘汰期。
今年安博会上,不少厂商以智能和云计算为主要着眼点,推出了自己的视频云解决方案。这种方案的理念,就是以云计算为核心,用开放的智能算法和数据接口,来解决上层应用稳定、中间智能算法快速迭代、底层硬件设备随需扩展之间的矛盾。通过云操作系统,将硬件设备虚拟化,根据算法和应用系统的需求,进行插件式更新。不仅硬件可以随需扩展,算法也可以灵活更新。而且可以很好的支持算力灵活调度,支撑平战结合的高效应用。而视频云也并非全新概念,在国内部分地市建设过程中,也采用了相关技术,并取得了良好的应用效果。相信随着AI在公共安全领域的深化应用,视频云架构将成为基础设施的建设标准。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。