有超过500个高性能计算应用都采用了GPU加速,Nvidia把目标对准了让这些应用更易于访问。
Nvidia开始涉足融合GPU加速的大量高性能计算(HPC)应用,本周一宣布在Nvidia GPU Cloud (NGC)容器注册表中增加了新的软件和工具,可以让科学家们快速部署科学计算应用和HPC可视化工具,
通常,希望使用这些应用的科学家们面临着耗费大量时间的安装问题以及资源密集的升级过程。现在,访问这些应用就像“从苹果应用商店下载一款应用一样简单”,Nvidia公司副总裁、加速计算总经理Ian Buck表示。
任何持有NGC帐户的人,都可以从NGC容器注册表获得HPC应用和HPC可视化容器。HPC容器可以运行在任何Nvidia Pascal和下一代Nvidia GPU加速的系统上。
Nvidia在丹佛举行的SuperComputing17大会上公布了这些工具,展示Nvidia正在越来越多地涉足高性能计算领域。
目前,已经有超过500个HPC应用是GPU加速的。来自分析师公司Interesect360 Research的报告,这其中包括TOP15以及70%的TOP50 HPC应用。从天文学到生命科学和医疗成像,GPU加速应用正在被用于广泛的科学领域,但是却难以安装。
Buck解释说:“这些应用是从很多不同的软件堆栈和库之上进行开发的,是由研究人员为他们自己开发的,而不一定是为大众发布开发的——这并不是他们的首要任务。”
Nvidia在深度学习和云社区领域解决了相同的问题,上个月,Nvidia发布了GPU Cloud for AI开发者工具,现在该工具已经成为容器注册表的一部分。
就NGC中的HPC应用来说,Nvidia是从小范围起步的,主要有5个应用:GAMESS、GROMACS、LAMMPS、NAMD和RELION,未来还有更多。
与此同时,在HPC可视化方面,Nvidia与ParaView合作推出了三个容器现在正处于测试阶段:ParaView with Nvidia IndeX是针对可视化大规模批量数据的;ParaView with Nvidia Optix是针对光线追踪的;Nvidia Holodeck则提供了交互式的实时可视化和高质量视觉效果。
本周一Nvidia还宣布基于Nvidia Volta架构的Tesla V100 GPU现在已经通过所有主流服务器厂商和主流云服务提供商提供,以交付人工智能和高性能计算,服务器厂商包括Dell EMC、HPE、华为、IBM和联想,云服务提供商包括阿里云、AWS、百度云、微软Azure、Oracle Cloud和腾讯云。
好文章,需要你的鼓励
谷歌发布数据共享模型上下文协议服务器,使开发者和AI智能体能够通过自然语言访问真实世界统计数据。该服务整合了政府调查、行政数据和联合国等全球机构的公共数据集。新服务旨在解决AI系统训练中常见的数据噪声和幻觉问题,为AI提供可验证的结构化信息。谷歌还与ONE Campaign合作推出数据智能体工具,该开源服务器兼容任何大语言模型。
这项由谷歌DeepMind研究团队完成的开创性研究首次系统阐述了AI智能体经济的概念框架。研究提出"沙盒经济"模型,从起源性质和边界渗透性两个维度分析AI智能体经济形态,预测未来将出现自然涌现且高度透水的AI经济网络。研究详细探讨了科学加速、机器人协调、个人助手等应用场景,提出基于拍卖机制的公平资源分配方案和使命经济概念,并深入分析了技术基础设施需求、社区货币应用以及相关风险防范措施。
微软宣布从周三开始将Anthropic的AI模型集成到其Copilot助手中,此前该助手主要依赖OpenAI技术。企业用户可在OpenAI的深度推理模型和Anthropic的Claude Opus 4.1、Claude Sonnet 4之间选择,用于复杂研究和构建定制AI工具等任务。此举标志着微软与OpenAI这对曾经独家合作伙伴关系的进一步松动。
中国人民大学研究团队提出LoFT方法,通过参数高效微调基础模型解决长尾半监督学习中的数据不平衡问题。该方法利用预训练模型的良好校准特性改进伪标签质量,并扩展出LoFT-OW版本处理开放世界场景。实验显示,仅使用传统方法1%的数据量就能取得更优性能,为AI公平性和实用性提供了新的解决方案。