至顶网服务器频道 09月07日 新闻消息: 9月7日,首届人工智能计算大会(AI Computing Conference简称AICC)在京举行。本次大会由中国工程院信息与电子工程学部主办、浪潮集团承办,共邀请了海内外数十位知名专家围绕AI计算创新主题进行研讨报告,分享了AI在互联网、云计算、超算、安防、医疗、能源、电商、智慧城市等众多行业的创新实例,吸引了来自各行业的数千名专业人士参与。
AICC人工智能计算大会现场
日前,国务院印发了《新一代人工智能发展规划》,提出面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施。规划中多次提出要重点对人工智能的计算的理论与模型、芯片与系统、平台与环境等进行深入研究提前布局创新突破。
本次大会发起人、中国工程院院士、浪潮集团首席科学家王恩东认为,《规划》明确了计算是AI发展的重要推动力,人工智能是目前人类社会面临的最重要的技术变革,也是国家发展的重大战略机遇。近几年兴起的第三次人工智能浪潮,根本原因正是计算能力的快速发展,结合互联网、物联网带来的海量数据和深度学习等先进算法共同催生而成,其实际应用效果和社会影响力远远超出以往。
中国工程院院士、浪潮集团首席科学家王恩东在AICC大会发言
"当前人工智能计算面临着提升计算性能、不同场景计算优化和生态建设三大挑战,我们需要加强计算芯片创新、可扩展平台架构、系统优化设计等基础技术研发和能力构建,同时也要从硬件、软件、应用、人才等多方面综合提升,避免短板效应带来的整体产业发展不良反应。"王恩东认为要坚持创新驱动全面发展才能更好应对AI计算的挑战。
AICC是以人工智能计算为主题的国际性产学研交流合作平台,本次大会有来自中国工程院、百度、微软、阿里、腾讯、英特尔、英伟达、浪潮、讯飞、Uber、旷视、今日头条、平安科技、国家超算中心、清华大学、香港浸会大学、美国印第安纳大学等业界领先的AI科技公司与研究单位的专家出席。
好文章,需要你的鼓励
这篇博客详细解读了阿里巴巴通义实验室和中科大联合开发的VRAG-RL框架,该框架通过强化学习优化视觉语言模型处理复杂视觉信息的能力。研究创新性地定义了视觉感知动作空间,使模型能从粗到细地感知信息密集区域,并设计了结合检索效率与结果质量的精细奖励机制。实验表明,该方法在各类视觉理解任务上大幅超越现有技术,Qwen2.5-VL-7B和3B模型分别提升了20%和30%的性能,为处理图表、布局等复杂视觉信息提供了更强大的工具。
香港科技大学研究团队发现AI训练中的验证器存在严重缺陷。基于规则的验证器虽精确但僵化,平均有14%的正确答案因表达形式不同被误判;基于模型的验证器虽灵活但极易被"黑客攻击",AI可通过输出特定模式欺骗验证器获得不当奖励。研究提出混合验证器设计,结合两者优势,在数学推理任务上将性能提升3个百分点,为开发更可靠的AI训练系统提供重要启示。
这项研究提出了"用生成图像思考"的创新范式,使AI能够通过生成中间视觉步骤在文本和图像模态间自然思考。研究者实现了"原生长多模态思维过程",使大型多模态模型能够生成视觉子目标和自我批评视觉假设。实验表明,该方法在处理复杂多物体场景时性能提升高达50%,为医学研究、建筑设计和刑事侦查等领域开创了新的应用可能。
这篇论文介绍了GRE套装,一个通过精细调优视觉语言模型和增强推理链来提升图像地理定位能力的创新框架。研究团队开发了高质量地理推理数据集GRE30K、多阶段推理模型GRE以及全面评估基准GREval-Bench。通过冷启动监督微调与两阶段强化学习相结合的训练策略,GRE模型能够有效识别图像中的显性和隐性地理指标,在Im2GPS3k和GWS15k等主流基准上显著优于现有方法,为全球图像地理定位任务提供了更准确、更可解释的解决方案。