至顶网服务器频道 08月11日 新闻消息(文/董培欣):
8月9日,阿里云正式发布云服务器ECS企业级产品家族,目前已推出面向173种企业应用场景的19款实例。同时阿里云也新发布了该系列产品中采用25G网络与Skylake处理器的全新一代实例。
阿里云ECS产品负责人蒋林泉正式发布阿里云ECS企业级产品家族
目前ECS企业级产品家族包含19款实例族,分为通用型(General Purpose Type) 、计算性(Compute Type)、内存型(Memory Type)、高主频(High Frequency Compute Type)、本地SSD型(Local SSD Type)、大数据型(Big Data Network Enhancement Type)、GPU计算(GPU Compute Type) 、FPGA计算(FPGA Compute Type)等类型,分别适用于包括AI、医疗、视频直播、金融、电商、IoT在内的173个应用场景。
计算方面,ECS企业级产品家族采用了为云计算场景特别定制的Skylake处理器,各项性能首屈一指。
存储领域,ECS企业级产品家族进化为计算与存储分离的先进架构,SSD云盘单实例达到18万IOPS,包括Latency以及吞吐都跃进一层。
基础网络,ECS企业级产品家族将基础网络设施升级到25G。同时将底层网络虚拟化架构进行重构,全面升级到第二代Apsara vSwitch技术。在网络的PPS性能上达到了单实例 450万PPS,Latency降低了66%,实现媲美物理机的网络能力。
与此同时,阿里云宣布企业级产品家族部分实例最高降幅35%(详情见官网),并对8月3日前的客户推出向企业级实例变配补贴50%差价。
基于全新一代的基础技术,阿里云新发布了计算型C5、通用型G5、内存型R5、高主频计算型HFC1、本地SSD型I2等数款实例。这一系列产品最高支持88核,704G内存。并通过25G基础网络带来了200%的网络带宽提升,基于Skylake带来单实例最高60%的计算性能提升,基于计算存储分离架构获得300%的云盘IOPS吞吐提升,基于Apsara vSwitch获得300%网络PPS吞吐性能提升。其中I2在数据库垂直场景相较于I1提升至210万IOPS。
针对对IO有强需求的企业客户,阿里云新引入本地SSD机型I1,该实例具备高达48万IOPS。为需要进行大数据计算的客户提供大数据型实例D1NE,单GB存储成本下降97%,整机吞吐能力提升400%,网络带宽提升200%。
面向人工智能行业,阿里云在此前的GPU可视化计算型GA1、FPGA计算型F1、GPU计算型GN4的基础上,国内首家推出具备8块NVIDIA P100的GPU计算性GN5,达到74.4TFLOPS,比上一代双精度性能提升近100倍。
此外,通过阿里云新建的高等级云数据中心加上高可用的骨干网络,可以为用户提供更加优质的BGP体验。目前,阿里云基础设施历史运行可用性达到了99.999%。自研的飞天系统已具备全球一张网的管理运维能力,两者配合使得基础设施更为健壮。可以更好的为企业云计算业务应用来保驾护航。
脱离了概念的炒作和一味的价格比拼,在本次阿里云ECS企业级产品家族发布会上,通过一个个有针对性的应用技术指标实例,让我们真切的体会到了“云”技术的真实落地。阿里云通过面向173种企业应用场景,有针对性的19款实例族,做到了云计算企业应用细致划分。通过更高性能的网络、计算、存储性能指标,向更多云计算厂商发出了有力的应用性能挑战。
同时,只有明确了性能指标之后,云计算的产品价格才会有实际性的意义。才可以通过性能与价格去全面衡量一个云计算产品,让云落到实处,真实的去解决企业实际应用问题。当然云计算厂商自己发布性能指标,最好能有一些第三方的测试机构来为之进行确认。以后第三方媒体,比如我们至顶网也会发布一些第三方的公有云性能测试结果出来,从而更加公开、公正的将公有云应用性能向用户去进行剖析。
好文章,需要你的鼓励
随着AI模型规模不断扩大,GPU内存容量已成为瓶颈。Phison和Sandisk分别提出了软硬件解决方案:Phison的aiDAPTIV+软件通过创建跨GPU内存、CPU内存和SSD的虚拟内存池,支持高达700亿参数的模型;而Sandisk的高带宽闪存(HBF)则采用类似HBM的硬件架构,通过TSV连接器将NAND闪存与GPU紧密集成。Phison方案适合中小企业和边缘系统,Sandisk方案则针对大型GPU服务器,两种技术可共存互补。
上海AI实验库推出YUME系统,用户只需输入一张图片就能创建可键盘控制的虚拟世界。该系统采用创新的运动量化技术,将复杂的三维控制简化为WASD键操作,并通过智能记忆机制实现无限长度的世界探索。系统具备强大的跨风格适应能力,不仅能处理真实场景,还能重现动漫、游戏等各种艺术风格的虚拟世界,为虚拟现实和交互娱乐领域提供了全新的技术路径。
法国AI初创公司Mistral AI发布了首个大语言模型全面生命周期评估,量化了AI的环境代价。其Mistral Large 2模型训练产生20,400吨二氧化碳当量,消耗281,000立方米水。运营阶段占环境影响85%,远超硬件制造成本。研究表明地理位置和模型大小显著影响碳足迹,企业可通过选择适当规模模型、批处理技术和清洁能源部署来减少环境影响。这一透明度为企业AI采购决策提供了新的评估标准。
上海AI实验室研究团队开发了革命性的AI编程验证方法,让大语言模型能够在最小人工干预下自动生成和验证程序规范。该方法摒弃传统的人工标注训练,采用强化学习让模型在形式化语言空间中自主探索,在Dafny编程验证任务上显著超越现有方法,为AI自主学习开辟新道路。