至顶网服务器频道 05月31日 新闻消息:NVIDIA于本周二正式宣布与世界四家大型计算机制造商签署协议,双方将采用由NVIDIA方面提供的图形芯片支持型服务器设计方案,从而支持各类要求极高的“超大型”数据中心内的人工智能相关工作负载。
此次与NVIDIA合作的原始设计制造商(简称ODM厂商)为四家来自台湾的计算机及其它电子产品制造商,其中包括鸿海精密工业有限公司(亦被称为富士康)、英业达公司、广达电脑公司以及纬创公司。它们将成为NVIDIA合作伙伴计划中的一部分,并有资格率先体验由NVIDIA图形处理单元(简称GPU)负责支持的HGX架构设计(如上图所示)。
根据本周于台北Computex大会上公布的消息,这套数据中心设计方案与微软公司内部的Olympus项目、Facebook的Big Basin系统以及NVIDIA自家的DGX-1超级计算机完全相同。NVIDIA方面此前已经面向Amazon Web Services等云计算供应商提供类似的项目,但这一次是其首度将架构开放给ODM厂商。
NVIDIA加速计算产品高级主管Keith Morris在接受采访时表示,该公司希望交付一套超大规模数据中心标准,旨在帮助各ODM厂商将NVIDIA技术方案纳入自家体系,从而更高更高效地实现产品上市。
Morris解释称,“我们正在试图实现AI民主化。”尽管他没有明确静态,但NVIDIA无疑正在努力保证其图形芯片始终在AI工作负载领域扮演核心角色——特别是考虑到英特尔甚至谷歌等竞争对手正不断向AI领域投入其它类型的芯片方案。总而言之,NVIDIA正在积极寻求可行途径,希望借此防止制造商大量使用可能冲击其市场份额的其它定制化芯片设计方案。
而在此次合作消息公布之前,NVIDIA刚刚于5月10号在其GPU技术大会上亮出一款针对人工智能进行优化的全新芯片,其高度关注深度学习神经网络并旨在实现自动驾驶车辆以及即时语言翻译等最新突破性应用。这款基于全新Volta架构的芯片能够在单一大型晶片之上封装约2100亿个晶体管。与NVIDIA的上代芯片相比,这款尺寸与Apple Watch类似的芯片能够将深度学习的执行速度提升约12倍。
今年第三季度将有一款采用这款芯片的全新NVIDIADGX-1超级计算设备正式投放市场,价格为14万9千美元; 而到今年第四季度,该芯片也将随同其它服务器制造商的产品一同推出。
NVIDIA表示,其HGX参考设计旨在满足超大规模云环境需求。其能够通过多种方式实现配置,将GPU与CPU相结合以实现高性能计算,同时可以对深度学习神经网络进行训练与运行。NVIDIA方面同时补充称,HGX亦面向云服务供应商长久以来所期盼的GPU云平台——该平台提供一系列开源深度学习框架,具体包括TensorFlow、Caffe2、Cognitive Toolkit以及MXNet。
纬创公司企业业务部门总裁兼首席技术官Donald Hwang在一份声明中指出,客户“渴望利用更多GPU计算能力以处理各类AI工作负载,通过这种新的合作关系,我们将能够更快提供此类新型解决方案。”
NVIDIA近年来的市场表现一直不错,这主要是由于其图形芯片已然成为AI类工作负载的核心支柱。根据今年5月9日发布的财报,其第一财季利润额度高于预期,达到上年同期的两倍以上。而消息发布之后,投资者们亦热烈响应,直接令NVIDIA的股价上涨达14%。
好文章,需要你的鼓励
中国AI初创公司月之暗面发布开源语言模型Kimi K2,采用万亿参数混合专家架构,在编程和自主代理任务上表现卓越。该模型在SWE-bench等关键基准测试中超越GPT-4,同时提供免费开源版本和低价API服务。Kimi K2具备强大的"代理"能力,能自主使用工具、编写代码并完成复杂多步骤任务,标志着开源AI模型首次在综合能力上追平甚至超越闭源竞品,可能重塑AI行业竞争格局。
清华大学研究团队开发出VideoScene技术,能够仅从两张普通照片一步生成完整3D场景视频,速度比传统方法快50倍。该技术巧妙结合了3D重建与视频生成,采用"3D感知跨越流蒸馏"策略和"动态去噪策略网络",在多项评估指标上显著超越现有方法。这项突破为VR/AR、游戏开发、电商展示等领域带来革命性应用前景,标志着从"大量数据依赖"向"智能有限数据利用"的重要转变。
AI人才争夺战愈演愈烈。Meta大举挖角后,OpenAI招募了特斯拉前软件工程副总裁David Lau和xAI基础设施架构师。Meta向其超级智能实验室部署新员工,以超2亿美元薪酬包招聘苹果基础模型负责人。这场激烈竞争造成了AI对劳动力影响的两极分化:科技巨头为顶尖AI人才开出九位数薪酬,但大规模裁员仍在继续。受影响岗位不仅包括人力资源和客服,还包括软件开发和中层管理职位。
蒙纳什大学等机构联合开发的VLIPP框架首次让AI视频生成真正"懂"物理定律。该系统通过视觉语言模型预测物理运动轨迹,再由视频扩散模型生成高质量画面,在两大权威基准测试中全面超越现有方法,为影视制作、教育等领域带来革命性突破。