至顶网服务器频道 05月31日 新闻消息:NVIDIA于本周二正式宣布与世界四家大型计算机制造商签署协议,双方将采用由NVIDIA方面提供的图形芯片支持型服务器设计方案,从而支持各类要求极高的“超大型”数据中心内的人工智能相关工作负载。
此次与NVIDIA合作的原始设计制造商(简称ODM厂商)为四家来自台湾的计算机及其它电子产品制造商,其中包括鸿海精密工业有限公司(亦被称为富士康)、英业达公司、广达电脑公司以及纬创公司。它们将成为NVIDIA合作伙伴计划中的一部分,并有资格率先体验由NVIDIA图形处理单元(简称GPU)负责支持的HGX架构设计(如上图所示)。
根据本周于台北Computex大会上公布的消息,这套数据中心设计方案与微软公司内部的Olympus项目、Facebook的Big Basin系统以及NVIDIA自家的DGX-1超级计算机完全相同。NVIDIA方面此前已经面向Amazon Web Services等云计算供应商提供类似的项目,但这一次是其首度将架构开放给ODM厂商。
NVIDIA加速计算产品高级主管Keith Morris在接受采访时表示,该公司希望交付一套超大规模数据中心标准,旨在帮助各ODM厂商将NVIDIA技术方案纳入自家体系,从而更高更高效地实现产品上市。
Morris解释称,“我们正在试图实现AI民主化。”尽管他没有明确静态,但NVIDIA无疑正在努力保证其图形芯片始终在AI工作负载领域扮演核心角色——特别是考虑到英特尔甚至谷歌等竞争对手正不断向AI领域投入其它类型的芯片方案。总而言之,NVIDIA正在积极寻求可行途径,希望借此防止制造商大量使用可能冲击其市场份额的其它定制化芯片设计方案。
而在此次合作消息公布之前,NVIDIA刚刚于5月10号在其GPU技术大会上亮出一款针对人工智能进行优化的全新芯片,其高度关注深度学习神经网络并旨在实现自动驾驶车辆以及即时语言翻译等最新突破性应用。这款基于全新Volta架构的芯片能够在单一大型晶片之上封装约2100亿个晶体管。与NVIDIA的上代芯片相比,这款尺寸与Apple Watch类似的芯片能够将深度学习的执行速度提升约12倍。
今年第三季度将有一款采用这款芯片的全新NVIDIADGX-1超级计算设备正式投放市场,价格为14万9千美元; 而到今年第四季度,该芯片也将随同其它服务器制造商的产品一同推出。
NVIDIA表示,其HGX参考设计旨在满足超大规模云环境需求。其能够通过多种方式实现配置,将GPU与CPU相结合以实现高性能计算,同时可以对深度学习神经网络进行训练与运行。NVIDIA方面同时补充称,HGX亦面向云服务供应商长久以来所期盼的GPU云平台——该平台提供一系列开源深度学习框架,具体包括TensorFlow、Caffe2、Cognitive Toolkit以及MXNet。
纬创公司企业业务部门总裁兼首席技术官Donald Hwang在一份声明中指出,客户“渴望利用更多GPU计算能力以处理各类AI工作负载,通过这种新的合作关系,我们将能够更快提供此类新型解决方案。”
NVIDIA近年来的市场表现一直不错,这主要是由于其图形芯片已然成为AI类工作负载的核心支柱。根据今年5月9日发布的财报,其第一财季利润额度高于预期,达到上年同期的两倍以上。而消息发布之后,投资者们亦热烈响应,直接令NVIDIA的股价上涨达14%。
好文章,需要你的鼓励
Ubuntu 25.10和Fedora 43的下一个版本将在GNOME变体中仅支持Wayland,这是因为GNOME 49将移除X11会话。此变化只影响GNOME版本,两个发行版仍提供其他桌面环境选项。GNOME项目还计划引入对systemd的更强依赖,这将使GNOME在非Linux系统上运行变得更困难。尽管存在用户阻力,但Red Hat作为主要赞助商推动了这一转变。
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
金融科技公司Chime在纳斯达克首日交易表现强劲,股价上涨超过37%。公司IPO定价每股27美元,筹资约7亿美元,收盘价达37.11美元。Chime第一季度营收5.187亿美元,同比增长32%,净利润1270万美元,是少数盈利上市的科技公司。截至3月底,公司拥有860万活跃用户,同比增长23%。作为数字银行服务商,Chime主要服务年收入10万美元以下客户群体,提供免费支票账户等服务。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。