至顶网服务器频道 05月16日 新闻消息:5月9日,浪潮在美国圣何塞举行的2017 GPU技术大会(GTC17)上发布了新一代并行深度学习计算框架Caffe-MPI。测试数据显示,在基于国际通行的Imagenet数据集进行深度学习模型训练时,Caffe-MPI表现出良好的并行扩展,其性能是Google最新深度学习框架TensorFlow的近两倍。Caffe-MPI是全球首个集群并行版的Caffe深度学习计算框架,由浪潮主导开发并已在Github上开源公布所有代码。
浪潮GTC17发布新一代Caffe-MPI现场
浪潮新一代Caffe-MPI与TensorFlow实测数据对比
Caffe和TensorFlow是当今全球最流行的两个开源深度学习框架。Caffe由美国加州大学伯克利分校开发,是世界第一个工业级深度学习框架,但其架构不够灵活扩展性较差;TensorFlow是Google开发的深度学习框架,已经被广泛使用在Google的搜索、图像识别及邮箱等业务。
浪潮开发的Caffe-MPI保留了伯克利版本Caffe架构的优良特性,同时又针对高性能计算系统设计使之具备良好的并行扩展性。新版本Caffe-MPI在4节点16块GPU卡集群系统上训练性能较单卡提升13倍,其每秒处理图片数量是同配置集群运行的TensorFlow 1.0的近2倍。
Caffe-MPI在性能上的出色表现得益其在并行算法设计上的创新突破。Caffe-MPI设计了两层通信模式:节点内的GPU卡间通信及节点间的RDMA全局通信,这极大降低了网络通信的压力,并克服了传统通信模式中PCIE与网络之间带宽不均衡的影响,这样的设计方式非常适合现在的高密度GPU服务器,同时Caffe-MPI还设计实现了计算和通信的重叠。此外,新版本Caffe-MPI提供了更好的cuDNN兼容性,用户可以无缝调用最新的cuDNN版本实现更大的性能提升。
在本次GTC大会上,浪潮全面展示了面向人工智能用户完整的AI产品解决方案,包括全球首个2U空间内支持8块NVLink或PCI-E 接口P100 GPU的人工智能超级计算机AGX-2、浪潮联合百度研发的支持单机16块GPU卡扩展的SR-AI整机柜服务器,以及人工智能深度学习集群管理软件AIStation和并行深度学习框架Caffe-MPI等创新产品技术。
人工智能深度学习是浪潮智慧计算三大支柱业务之一。浪潮新财年宣布成立人工智能部门,并着力打造多样化的硬件平台、管理调度与分析平台和深度学习框架的"平台组合",实现前端承接多源数据、后端支撑智能应用,为人工智能提供领先计算力。目前,浪潮已经是全球顶级互联网公司百度、阿里和腾讯的AI计算GPU服务器的最主要供应商,并与科大讯飞、奇虎360、搜狗、今日头条、Face++等人工智能领先公司保持在系统与应用方面的深入紧密合作,帮助客户在语音、图像、视频、搜索、网络等方面取得数量级的应用性能提升。
好文章,需要你的鼓励
美光推出新款 Crucial P510 PCIe Gen5 SSD,采用 276 层 3D NAND 闪存和群联 PS5031-E31T 控制器。该产品针对游戏和创意工作负载优化,提供高达 11,000/9,500 MBps 的读写速度,同时通过无 DRAM 设计降低成本。美光与群联的合作旨在满足当今技术用户对高性能和高效率存储的需求。
随着检索增强生成 (RAG) 技术的兴起,企业有望更好地利用大语言模型 (LLM) 和公司内部数据。RAG 技术能够将 LLM 与企业特定领域知识相结合,提升 AI 服务质量。未来,RAGOps 和智能代理等新方法将有助于 RAG 技术的大规模应用,为企业 AI 落地提供更多可能性。
HYCU 扩展了其 R-Cloud 服务,提升了数据在本地和公有云间的移动能力。升级后,客户可以更灵活地将数据放置在合适的混合或公有云环境中,优化成本。新版本支持更多基础设施,简化了备份、灾难恢复和迁移流程,实现一键式操作,帮助客户在不同平台间自由选择,避免被特定基础设施锁定。
微软计划在2025年淘汰和终止多项企业级Microsoft 365服务,不仅限于Windows 10支持的终止。这将对企业管理员带来巨大挑战,涉及Exchange Online、SharePoint、Teams等多个核心服务,需要企业提前做好准备和迁移工作。