2013年,Google意识到自己越来越依赖于机器学习,这迫使它不得不扩建数据中心使其数量翻一番,以应对预期的工作负载。
根据Google提供的数据中心运营(包括15个主要数据中心站点)的信息,Google正在考虑增加150亿美元的额外支出,如果Google的一个大型数据中心成本大约是10亿美元。
Google成立了一个团队开发定制的芯片,来处理部分神经网络工作流也就是推理工作,其中软件通过耗费时间和计算密集型的训练阶段产生的数据来进行预测。处理器在PCIe总线上,接受来自主机CPU的命令,这类似于以前的离散FPU或者数学协同处理器,但显然改善达到了今天的标准。
目标是将GPU(Graphic Processing Unit,图形处理器)的性价比提高10倍。据Google自己的估计,这已经成功了,虽然芯片被超越以来一直与内部开发的硬件处于竞争中。
在硅谷计算机历史博物馆举行的National Academy of Engineering会议上,技术演示文稿中提及了一篇文章,称Google的工程师们公布了Google的Tensor Processing Unit(TPU)——一个专门处理TensorFlow机器学习任务的定制ASIC——是如何在数据中心中运作的。
Google在Google I/O 2016大会上推出了他们的TPU。知名硬件工程师、MIPS CPU顶级架构师Norm Jouppi在一篇博客文章中表示,Google从2015年开始就在自己的数据中心内运行TPU,这种专有的芯片“为机器学习提供的每瓦性能有指数级的增长。”
Jouppi甚至表示,这种改进领先了7年时间,大约是摩尔定律下更新3代。
Google高管此前宣称,人工智能——包括机器学习和相关技术——对于Google的未来至关重要。针对人工智能进行的硬件定制强调了这个说法。
现在,Google与英特尔Hashwell CPU以及Nvidia Tesla K80 GPU的性能测试似乎验证了它的做法。
Jouppi在本周发表的一篇博客文章称,基于神经网络推理涉及的工作负载,“TPU要比当前GPU和GPU快15-30倍”,而且实现“30-80倍改善”是以每瓦TOPS计算的。
斯坦福视觉实验室的博士生Justin Johnson在一篇博客文章中指出,Google的研究院人员将其与Tesla K80 GPU进行了对比,后者已经推出了两袋,缺乏对TPU中计算的硬件支持。
“对比结果看起来并不是特别突出,仅次于现有的Tesla P40 GPU,据称P40提供了47 INT8 TOP/s at 250W TDP;与P40相比,TPU快1.9倍,能效提高6.5倍。”
尽管如此,Google的结果表明,“成本能源表现的重大改进来自于特定的硬件”,换句话说,半导体制造商可能更倾向于将他们设计的硬件与预期应用进行匹配。
Johnson解释说,TPU是设计旨在加速神经网络推理阶段的专用硬件,一部分是通过将32位浮点计算量化为较低精度的8位计算。
“这使其相比通用GPU实现更高的速度和能效。能源效率在大规模数据中心场景下尤为重要,改善能源效率可以显著降低大规模运营的成本。”
Johnson表示,他不太确定TPU是否具有广泛意义。“因为它不是专门用于训练的,我认为研究人员可能会在不久的将来坚持使用Nvidia。涉及你自己的定制硬件是一项庞大的工程设计,可能超出了大多数公司的能力,所以我不期望在不久的将来每家公司都拥有自己定制的TPU芯片。”
尽管如此,他推测TPU将有助于Google Cloud Platform减少来自AWS的竞争,至少在客户在生产中训练神经网络方面。
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。