2013年,Google意识到自己越来越依赖于机器学习,这迫使它不得不扩建数据中心使其数量翻一番,以应对预期的工作负载。
根据Google提供的数据中心运营(包括15个主要数据中心站点)的信息,Google正在考虑增加150亿美元的额外支出,如果Google的一个大型数据中心成本大约是10亿美元。
Google成立了一个团队开发定制的芯片,来处理部分神经网络工作流也就是推理工作,其中软件通过耗费时间和计算密集型的训练阶段产生的数据来进行预测。处理器在PCIe总线上,接受来自主机CPU的命令,这类似于以前的离散FPU或者数学协同处理器,但显然改善达到了今天的标准。
目标是将GPU(Graphic Processing Unit,图形处理器)的性价比提高10倍。据Google自己的估计,这已经成功了,虽然芯片被超越以来一直与内部开发的硬件处于竞争中。
在硅谷计算机历史博物馆举行的National Academy of Engineering会议上,技术演示文稿中提及了一篇文章,称Google的工程师们公布了Google的Tensor Processing Unit(TPU)——一个专门处理TensorFlow机器学习任务的定制ASIC——是如何在数据中心中运作的。
Google在Google I/O 2016大会上推出了他们的TPU。知名硬件工程师、MIPS CPU顶级架构师Norm Jouppi在一篇博客文章中表示,Google从2015年开始就在自己的数据中心内运行TPU,这种专有的芯片“为机器学习提供的每瓦性能有指数级的增长。”
Jouppi甚至表示,这种改进领先了7年时间,大约是摩尔定律下更新3代。
Google高管此前宣称,人工智能——包括机器学习和相关技术——对于Google的未来至关重要。针对人工智能进行的硬件定制强调了这个说法。
现在,Google与英特尔Hashwell CPU以及Nvidia Tesla K80 GPU的性能测试似乎验证了它的做法。
Jouppi在本周发表的一篇博客文章称,基于神经网络推理涉及的工作负载,“TPU要比当前GPU和GPU快15-30倍”,而且实现“30-80倍改善”是以每瓦TOPS计算的。
斯坦福视觉实验室的博士生Justin Johnson在一篇博客文章中指出,Google的研究院人员将其与Tesla K80 GPU进行了对比,后者已经推出了两袋,缺乏对TPU中计算的硬件支持。
“对比结果看起来并不是特别突出,仅次于现有的Tesla P40 GPU,据称P40提供了47 INT8 TOP/s at 250W TDP;与P40相比,TPU快1.9倍,能效提高6.5倍。”
尽管如此,Google的结果表明,“成本能源表现的重大改进来自于特定的硬件”,换句话说,半导体制造商可能更倾向于将他们设计的硬件与预期应用进行匹配。
Johnson解释说,TPU是设计旨在加速神经网络推理阶段的专用硬件,一部分是通过将32位浮点计算量化为较低精度的8位计算。
“这使其相比通用GPU实现更高的速度和能效。能源效率在大规模数据中心场景下尤为重要,改善能源效率可以显著降低大规模运营的成本。”
Johnson表示,他不太确定TPU是否具有广泛意义。“因为它不是专门用于训练的,我认为研究人员可能会在不久的将来坚持使用Nvidia。涉及你自己的定制硬件是一项庞大的工程设计,可能超出了大多数公司的能力,所以我不期望在不久的将来每家公司都拥有自己定制的TPU芯片。”
尽管如此,他推测TPU将有助于Google Cloud Platform减少来自AWS的竞争,至少在客户在生产中训练神经网络方面。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。