2013年,Google意识到自己越来越依赖于机器学习,这迫使它不得不扩建数据中心使其数量翻一番,以应对预期的工作负载。
根据Google提供的数据中心运营(包括15个主要数据中心站点)的信息,Google正在考虑增加150亿美元的额外支出,如果Google的一个大型数据中心成本大约是10亿美元。
Google成立了一个团队开发定制的芯片,来处理部分神经网络工作流也就是推理工作,其中软件通过耗费时间和计算密集型的训练阶段产生的数据来进行预测。处理器在PCIe总线上,接受来自主机CPU的命令,这类似于以前的离散FPU或者数学协同处理器,但显然改善达到了今天的标准。
目标是将GPU(Graphic Processing Unit,图形处理器)的性价比提高10倍。据Google自己的估计,这已经成功了,虽然芯片被超越以来一直与内部开发的硬件处于竞争中。
在硅谷计算机历史博物馆举行的National Academy of Engineering会议上,技术演示文稿中提及了一篇文章,称Google的工程师们公布了Google的Tensor Processing Unit(TPU)——一个专门处理TensorFlow机器学习任务的定制ASIC——是如何在数据中心中运作的。
Google在Google I/O 2016大会上推出了他们的TPU。知名硬件工程师、MIPS CPU顶级架构师Norm Jouppi在一篇博客文章中表示,Google从2015年开始就在自己的数据中心内运行TPU,这种专有的芯片“为机器学习提供的每瓦性能有指数级的增长。”
Jouppi甚至表示,这种改进领先了7年时间,大约是摩尔定律下更新3代。
Google高管此前宣称,人工智能——包括机器学习和相关技术——对于Google的未来至关重要。针对人工智能进行的硬件定制强调了这个说法。
现在,Google与英特尔Hashwell CPU以及Nvidia Tesla K80 GPU的性能测试似乎验证了它的做法。
Jouppi在本周发表的一篇博客文章称,基于神经网络推理涉及的工作负载,“TPU要比当前GPU和GPU快15-30倍”,而且实现“30-80倍改善”是以每瓦TOPS计算的。
斯坦福视觉实验室的博士生Justin Johnson在一篇博客文章中指出,Google的研究院人员将其与Tesla K80 GPU进行了对比,后者已经推出了两袋,缺乏对TPU中计算的硬件支持。
“对比结果看起来并不是特别突出,仅次于现有的Tesla P40 GPU,据称P40提供了47 INT8 TOP/s at 250W TDP;与P40相比,TPU快1.9倍,能效提高6.5倍。”
尽管如此,Google的结果表明,“成本能源表现的重大改进来自于特定的硬件”,换句话说,半导体制造商可能更倾向于将他们设计的硬件与预期应用进行匹配。
Johnson解释说,TPU是设计旨在加速神经网络推理阶段的专用硬件,一部分是通过将32位浮点计算量化为较低精度的8位计算。
“这使其相比通用GPU实现更高的速度和能效。能源效率在大规模数据中心场景下尤为重要,改善能源效率可以显著降低大规模运营的成本。”
Johnson表示,他不太确定TPU是否具有广泛意义。“因为它不是专门用于训练的,我认为研究人员可能会在不久的将来坚持使用Nvidia。涉及你自己的定制硬件是一项庞大的工程设计,可能超出了大多数公司的能力,所以我不期望在不久的将来每家公司都拥有自己定制的TPU芯片。”
尽管如此,他推测TPU将有助于Google Cloud Platform减少来自AWS的竞争,至少在客户在生产中训练神经网络方面。
好文章,需要你的鼓励
Colt科技服务公司推出超低延迟云连接服务Colt ULL DCA,专门面向加密货币交易商和AI应用开发企业的高速需求。该服务结合超低延迟网络和专用云接入平台,绕过公共互联网提供专用高速路径。在AWS亚洲区域测试中,平均延迟比原生路由降低15%。随着亚太地区数字资产交易成熟和AI需求爆发,企业对安全高性能连接需求激增,Colt正加速在东南亚扩张布局。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。