英特尔人工智能产品集团新上任的首席技术官Amir Khosrowshahi表示,当你使用GPU水平较低的时候,业界需要新架构用于神经网络的理由就愈加明显了。
Khosrowshahi此前是Nervana System公司的共同创始人兼首席技术官,该公司在去年8月被英特尔收购,金额未对外公布。Nervana的技术迅速成为英特尔人工智能计划的核心。
Khosrowshahi详细介绍了Nervana公司是如何使用GPU的,因为“这是最先进的技术”,Nervana用它自己的汇编器取代了标准的Nvidia汇编器,因为这被Nervana视为可以生成“次优”指令。
“我们在公司发展初期是这么做的,部分是为了我们自己的发展,但后来我们意识到它比Nvidia的库要快2-3倍,所以我们将其作为开源发布了。”
Nervana的努力并没有止步于软件方面,它还创造了自己的硅芯片瞄准神经网络训练。
“神经网络是一系列预定的操作,它不像是用户与系统的交互,它是一组可以被描述为数据流图表的指令。”
据Khosrowshahi称,一些功能有助于图形处理单元执行图形渲染工作——如大量缓存,处理节点,渲染——都是多余的。
“GPU中有很多电路,这对于机器学习来说并不是必需的,随着时间推移有很多东西堆积起来。”
“你并不需要电路,这些电路在芯片中占很大比例,而且能源利用成本也很高。”
“神经网络非常简单,它是很少的矩阵乘法和非线性,你可以直接搭建硅芯片来实现。你可以搭建硅芯片专用于神经网络架构,GPU却不是这样的。”
Khosrowshahi给出的答案是正在开发的Lake Crest,英特尔将在今年向选定客户推出这个独立的加速器,随着时间的推移,它还将更紧密地与至强处理器捆绑在一起。
“这是一个张量处理器,处理矩阵操作的指令。”Khosrowshahi解释说。“所以指令集是矩阵1乘以矩阵2,通过一个查找表,而且这些大指令都是高级别的。”
“在GPU中,它是一个个的寄存器,移入另一个寄存器,做逐个元素的乘法,这是相当低级别的。”
不过Khosrowshahi表示,Nvidia近年来努力让他们的GPU更适合于神经网络,他们的人工智能芯片仍然具有大量图形功能。
“作为一家芯片厂商,我可以看出为什么这对Nvidia来说很困难,”Khosrowshahi说。
另一方面,英特尔通过收购一步步接近人工智能。
“推出一个全新的价格,这在芯片行业是一大挑战;英特尔的方式就是收购。他们收购了FPGA,所以又收购了Altera,Altera是一个非常酷的架构,专注于神经网络,所以FPGA架构对于神经网络来说是非常有趣的……当然,Nervana芯片很大程度上也是一个专注于引擎的神经网络,但是稍微脱离出神经网络一些。”
当谈到神经网络时,Khosrowshahi认为考虑在硅芯片中做蚀刻神经网络是错误的,因为其中很多功能仍然是在软件方面的。
“很多功能都是在软件的,所以即使开发了Lake Crest,针对Lake Crest的指令也不是‘神经网络,这么做’,而是这个矩阵乘以这个矩阵。”
“除了芯片之外,还有一些软件知道这是神经网络,这是训练,用户寻找不同的东西并搜索参数——当你有了神经网络系统的时候这些都是你要做的事情。”
在神经科学的大背景下,Khosrowshahi认为人工智能的重点不是重建人脑,而是超越人脑。
“人脑就是人工智能的一个例子,但这是相当有限的人工智能,我的视觉系统看到了物理世界,它知道去了解世界的统计数据。”
“如果你环顾四周,你能看到很多边缘、很多表面、阴影区等等,如果你看看大脑……主要是视觉皮层,有对这些特征敏感的神经元,所以你的人工智能了解这个世界的统计数据,并且能够对此进行推论——就像是这个杯子快要打碎,我接住了这个杯子。”
但是企业内的数据与人类互动的数据大不相同,Khosrowshahi说。
“这个统计数据是非常不直观的,所以让人工智能处理这些数据是另外一种智能了。”
“这试图向人们解释这一点,因为他们认为我们正在创造一个大脑,我们想做的超越了这一点,我们希望创造一种新的人工智能,可以理解企业、医疗等所有领域的数据统计,这些数据本质上与现实世界中的截然不同。
英特尔人工智能架构的竞争对手之一是Google定制的Tensor Processing Unit,本周Google称这种架构笔当前的GPU和CPU快15-30倍,功效高30-80倍。
本周,IBM和Nvidia也宣布IBM将从5月开始在IBM Cloud中提供Tesla的P100。
好文章,需要你的鼓励
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
GlobalData研究显示,人工智能驱动的预测性维护正成为电力行业追求高可靠性和成本效益的关键组成部分。该技术结合数据分析、机器学习和实时监控,能够更准确预测设备未来状况,有望降低维护成本30%,提高设备可用性20%。GE Vernova、西门子等公司提供先进解决方案,而数字孪生技术、物联网和边缘计算等新兴技术正进一步提升维护策略的准确性和效率。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。