2016年是人工智能走向主流的元年,不论是数据、算法、计算能力还是应用,人工智能正以前所未有的关注度出现在公众的眼前。Google的Alaph-Go击败李世石和百度无人驾驶汽车实现混合路况的实际测试,成为2016年人工智能领域两起颠覆传统观念的重大事件,人工智能开始正式融入我们的日常生活。
未来,人工智能也将成为互联网和其他各个行业变革和升级的主要动因,因此人工智能也正在成为国家重点关注的领域。近日,国家发改委正式批复,由百度牵头筹建深度学习技术及应用国家工程实验室,与其他共建单位一起,推动我国深度学习技术及应用领域的产学研标用全面发展!
百度近些年在技术上投入巨大,在语音、图像及无人驾驶等众多技术和应用领域都达到了全球领先水平。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%,人脸识别准确率更高达99.7%,基于百度人工智能技术的“小度机器人”在《最强大脑》中连过三关进入脑王决赛。多年的资源投入和技术积累,让百度成为名副其实的国内人工智能领军力量。
据悉,百度深度学习技术及应用国家工程实验室将开放百度处于全球领先水平的深度学习三大关键资源——计算资源、算法资源和大数据资源。
深度学习概念和浅层学习算法已经被提出多年,如今人工智能逐渐升温,主要推动因素是数据量的积累和计算能力的提升。在数据中心计算方面,浪潮与百度已保持多年战略合作,并在人工智能所需要的计算架构、技术和产品等方面联合研发,取得诸多成果。
比如双方联合开发的高性能异构计算服务器、FPGA加速模块等被广泛应用在包括百度无人车、百度大脑等人工智能场景。
随着百度人工智能应用的场景和规模快速发展,百度对于计算平台的能力提出更高要求。浪潮又支持百度研发了面向更大规模数据集和深层神经网络的超级AI计算模块--GPUBOX,这是行业首个单模块支持16GPU、并可堆叠扩展至64GPU的超高密度计算方案,可实现更大规模的计算资源池化,极大提升百度人工智能应用上线应用速度。
数据显示,2016年浪潮人工智能相关解决方案在国内主要互联网人工智能相关领域的份额超过80%。并且具备10万核以上CPU+GPU/MIC/FPGA的大规模并行算法设计、程序开发和软件调优能力,通过自主研发的开源版本CAFFE-MPI和ClusterEngine高性能计算管理平台,面向人工智能和深度学习,打造专业的异构加速平台,为中国人工智能行业提供计算力支撑。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。