2016年是人工智能走向主流的元年,不论是数据、算法、计算能力还是应用,人工智能正以前所未有的关注度出现在公众的眼前。Google的Alaph-Go击败李世石和百度无人驾驶汽车实现混合路况的实际测试,成为2016年人工智能领域两起颠覆传统观念的重大事件,人工智能开始正式融入我们的日常生活。
未来,人工智能也将成为互联网和其他各个行业变革和升级的主要动因,因此人工智能也正在成为国家重点关注的领域。近日,国家发改委正式批复,由百度牵头筹建深度学习技术及应用国家工程实验室,与其他共建单位一起,推动我国深度学习技术及应用领域的产学研标用全面发展!
百度近些年在技术上投入巨大,在语音、图像及无人驾驶等众多技术和应用领域都达到了全球领先水平。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%,人脸识别准确率更高达99.7%,基于百度人工智能技术的“小度机器人”在《最强大脑》中连过三关进入脑王决赛。多年的资源投入和技术积累,让百度成为名副其实的国内人工智能领军力量。
据悉,百度深度学习技术及应用国家工程实验室将开放百度处于全球领先水平的深度学习三大关键资源——计算资源、算法资源和大数据资源。
深度学习概念和浅层学习算法已经被提出多年,如今人工智能逐渐升温,主要推动因素是数据量的积累和计算能力的提升。在数据中心计算方面,浪潮与百度已保持多年战略合作,并在人工智能所需要的计算架构、技术和产品等方面联合研发,取得诸多成果。
比如双方联合开发的高性能异构计算服务器、FPGA加速模块等被广泛应用在包括百度无人车、百度大脑等人工智能场景。
随着百度人工智能应用的场景和规模快速发展,百度对于计算平台的能力提出更高要求。浪潮又支持百度研发了面向更大规模数据集和深层神经网络的超级AI计算模块--GPUBOX,这是行业首个单模块支持16GPU、并可堆叠扩展至64GPU的超高密度计算方案,可实现更大规模的计算资源池化,极大提升百度人工智能应用上线应用速度。
数据显示,2016年浪潮人工智能相关解决方案在国内主要互联网人工智能相关领域的份额超过80%。并且具备10万核以上CPU+GPU/MIC/FPGA的大规模并行算法设计、程序开发和软件调优能力,通过自主研发的开源版本CAFFE-MPI和ClusterEngine高性能计算管理平台,面向人工智能和深度学习,打造专业的异构加速平台,为中国人工智能行业提供计算力支撑。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。