2016年是人工智能走向主流的元年,不论是数据、算法、计算能力还是应用,人工智能正以前所未有的关注度出现在公众的眼前。Google的Alaph-Go击败李世石和百度无人驾驶汽车实现混合路况的实际测试,成为2016年人工智能领域两起颠覆传统观念的重大事件,人工智能开始正式融入我们的日常生活。
未来,人工智能也将成为互联网和其他各个行业变革和升级的主要动因,因此人工智能也正在成为国家重点关注的领域。近日,国家发改委正式批复,由百度牵头筹建深度学习技术及应用国家工程实验室,与其他共建单位一起,推动我国深度学习技术及应用领域的产学研标用全面发展!
百度近些年在技术上投入巨大,在语音、图像及无人驾驶等众多技术和应用领域都达到了全球领先水平。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%,人脸识别准确率更高达99.7%,基于百度人工智能技术的“小度机器人”在《最强大脑》中连过三关进入脑王决赛。多年的资源投入和技术积累,让百度成为名副其实的国内人工智能领军力量。
据悉,百度深度学习技术及应用国家工程实验室将开放百度处于全球领先水平的深度学习三大关键资源——计算资源、算法资源和大数据资源。
深度学习概念和浅层学习算法已经被提出多年,如今人工智能逐渐升温,主要推动因素是数据量的积累和计算能力的提升。在数据中心计算方面,浪潮与百度已保持多年战略合作,并在人工智能所需要的计算架构、技术和产品等方面联合研发,取得诸多成果。
比如双方联合开发的高性能异构计算服务器、FPGA加速模块等被广泛应用在包括百度无人车、百度大脑等人工智能场景。
随着百度人工智能应用的场景和规模快速发展,百度对于计算平台的能力提出更高要求。浪潮又支持百度研发了面向更大规模数据集和深层神经网络的超级AI计算模块--GPUBOX,这是行业首个单模块支持16GPU、并可堆叠扩展至64GPU的超高密度计算方案,可实现更大规模的计算资源池化,极大提升百度人工智能应用上线应用速度。
数据显示,2016年浪潮人工智能相关解决方案在国内主要互联网人工智能相关领域的份额超过80%。并且具备10万核以上CPU+GPU/MIC/FPGA的大规模并行算法设计、程序开发和软件调优能力,通过自主研发的开源版本CAFFE-MPI和ClusterEngine高性能计算管理平台,面向人工智能和深度学习,打造专业的异构加速平台,为中国人工智能行业提供计算力支撑。
好文章,需要你的鼓励
阿里团队开发的FantasyPortrait系统突破了传统人像动画的局限,通过隐式表情表示和掩码交叉注意力机制,实现了高质量的单人和多人肖像动画生成,特别在跨身份表情迁移方面表现出色,为视频制作和虚拟交流等领域带来新的技术可能性。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
Akamai坚持“简而未减、网络先行、拥抱开源”的独特定位。凭借“鱼与熊掌兼得”的特色,过去几年,Akamai在电商、流媒体、广告科技、SaaS、金融科技等行业客户中获得了广泛认可。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。