2016年是人工智能走向主流的元年,不论是数据、算法、计算能力还是应用,人工智能正以前所未有的关注度出现在公众的眼前。Google的Alaph-Go击败李世石和百度无人驾驶汽车实现混合路况的实际测试,成为2016年人工智能领域两起颠覆传统观念的重大事件,人工智能开始正式融入我们的日常生活。
未来,人工智能也将成为互联网和其他各个行业变革和升级的主要动因,因此人工智能也正在成为国家重点关注的领域。近日,国家发改委正式批复,由百度牵头筹建深度学习技术及应用国家工程实验室,与其他共建单位一起,推动我国深度学习技术及应用领域的产学研标用全面发展!
百度近些年在技术上投入巨大,在语音、图像及无人驾驶等众多技术和应用领域都达到了全球领先水平。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%,人脸识别准确率更高达99.7%,基于百度人工智能技术的“小度机器人”在《最强大脑》中连过三关进入脑王决赛。多年的资源投入和技术积累,让百度成为名副其实的国内人工智能领军力量。
据悉,百度深度学习技术及应用国家工程实验室将开放百度处于全球领先水平的深度学习三大关键资源——计算资源、算法资源和大数据资源。
深度学习概念和浅层学习算法已经被提出多年,如今人工智能逐渐升温,主要推动因素是数据量的积累和计算能力的提升。在数据中心计算方面,浪潮与百度已保持多年战略合作,并在人工智能所需要的计算架构、技术和产品等方面联合研发,取得诸多成果。
比如双方联合开发的高性能异构计算服务器、FPGA加速模块等被广泛应用在包括百度无人车、百度大脑等人工智能场景。
随着百度人工智能应用的场景和规模快速发展,百度对于计算平台的能力提出更高要求。浪潮又支持百度研发了面向更大规模数据集和深层神经网络的超级AI计算模块--GPUBOX,这是行业首个单模块支持16GPU、并可堆叠扩展至64GPU的超高密度计算方案,可实现更大规模的计算资源池化,极大提升百度人工智能应用上线应用速度。
数据显示,2016年浪潮人工智能相关解决方案在国内主要互联网人工智能相关领域的份额超过80%。并且具备10万核以上CPU+GPU/MIC/FPGA的大规模并行算法设计、程序开发和软件调优能力,通过自主研发的开源版本CAFFE-MPI和ClusterEngine高性能计算管理平台,面向人工智能和深度学习,打造专业的异构加速平台,为中国人工智能行业提供计算力支撑。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。