2017年春节刚过,朋友圈的小伙伴还停留在晒出行、晒美食的氛围中。可华为关键业务服务器,再次打破SPEC测试性能世界纪录,递交了一份满意的开年答卷。还记得去年6月,华为关键业务服务器打破9项世界性能记录,关键业务服务器发货增长率领跑全球……成绩优异,但华为服务器团队没有傲娇,继续撸起袖子,埋头苦干。
2017年2月7日英特尔在Global CES大会上,发布Intel® Xeon® E7 v4 8894处理器,同时宣布该处理器打破多项世界世界性能记录,其中2项世界记录由华为4P+关键业务服务器贡献。至2016年6月华为4P+关键业务服务器打破9项性能测试世界纪录,不到半年时间,再创两项世界记录,深刻的体现华为服务器人的工匠精神。
英特尔官网公布华为4P+服务器新的性能测试世界纪录
华为4P+关键业务务服务器搭载Intel® Xeon® E7 v4 8894处理器,基于SPECCPU 2006标准测试,所有项目测试结果值与业界同期同等服务器相比均第一。测试结果如下:
|
SPECCPU2006 |
|
服务器型号 |
Rate-int |
Rate-fp |
5885H V3 |
3800 |
2460 |
SPEC CPU2006 Benchmark测试值打破世界记录
SPECCPU 2006是SPEC组织推出的一套CPU子系统性能评估测试标准,SPEC CPU结果值可以更全面、准确反映服务器的强大的计算能力,尤其是ERP、CRM、数据库等各种应用下的处理效率。其中SPECint_rate_2006 基准测试的目的,主要衡量服务器在多处理器工作时整点计算能力和编译器优化能力。测试结果主要反映服务器整体的计算、吞吐量、缓存的性能及编译器的优化能力;另一个SPECfp_rate_2006 基准测试主要是衡量服务器在多处理器的浮点计算能力和编译器优化能力. 测试结果 主要反映服务器的浮点计算、缓存性能及编译器优化能力。这些值越高越能体现服务器在处理数据库事务处理、高性能计算的能力,为企业选择一款高性能的服务器提供参考。
华为4P+关键业务服务器是针对企业大型数据库、虚拟化、ERP、大数据实时分析等关键业务所设计的高性能路服务器。本次打破性能测试世界纪录的5885H V3支持英特尔至强E7 v4系列处理器。它最高支持96个计算核心,高达96个内存插槽,满足企业业务性能扩展要求。华为4P+关键业务服务器除了具备高性能外,还具备多项优势:
1、支持NVMe SSD盘,可用于高速缓存和数据块高速读写的应用,提升数据存储性能。特别是在SAP HANA应用中,可提升数据入库3倍的性能;
2、支持TCM(或者TPM)加密接口,用户可灵活配置TCM加密模块,使关键业务应用更加安全;
3、支持RAID带外管理,灵活查询和设置RAID配置信息及状态,实现对硬盘的精确管理和配置,支持在线配置RAID信息,使管理更方便;
4、提供FDM2.0故障诊断功能,支持实时的智能故障分析,精确定位硬件故障,大幅提高产品可靠性;
华为服务器以用户为中心,坚持持续创新,走开放架构、合作共赢路线,向客户提供可靠、高效、简单的计算平台和解决方案,助力企业应对数字经济时代的挑战,构建领先优势。
根据Gartner的统计数据*,截至2016年第3季度,华为服务器出货量排名全球前三(不含塔式),增长率全球第一,4路关键业务服务器发货量及发货量增长率全球第一。华为服务器已服务于全球超过5000家客户,涵盖政府及公共事业、互联网、电信、能源、金融、交通、医疗、教育、媒资、制造等行业。
更多SPEC测试值请查阅www.spec.org官网。
*数据来源:Gartner“Market Share: Servers, Worldwide, 3Q16 Update”,2016年11月28日
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。