ZD至顶网服务器频道 04月27日 新闻消息(文/邹大斌): 随着IBM CEO罗睿兰对外宣布转型为认知商业和云计算公司,认知商业开始成为业界关注的一个重点。对于很多对认知商业感兴趣并有志于尝试认知商业的企业而言,随着而来的就是问题就是如何创造一个认知商业需要的IT环境,让认知商业在自己所在的企业顺利落地,早日迈上认知商业之旅。
要为认知商业搭建IT环境,首先需要明白认知商业的特点是什么,或者更直接些,知道Watson的特点。作为IBM在认知计算领域的代表,Watson是一个具有强大认知功能、基于云和开放标准的平台。凭借人类自然语言技术和机器学习等诸多技术,IBM Watson能帮助企业将大数据分析、人工智能、认知体验等种类日益繁多的认知技术融入到业务当中,帮助企业从大量非结构化数据中挖掘非凡洞察力,彻底改变商业问题解决的方式和效率。
“应该说,由IBM Watson产生的认知工作负载对企业传统的IT架构提出了严苛的要求。面对这些全新的工作负载,企业需要构建新型的IT基础架构,使其具备更强的计算能力、灵活性以及安全性,从而更好地获取基于云环境交付的IBM Watson能力。”IBM大中华区硬件系统部服务器解决方案副总裁施东峰告诉记者。
IBM大中华区硬件系统部Power Systems产品总监李红进一步解释说,认知商业的核心是认知计算,它有两个重点,一是数据,二是对数据的处理和学习的过程,这两个都涉及到IT能力问题,就是你怎么样处理数据、学习数据。而IBM Power System是完全可以为这样一个应用提供强大的支撑。
据悉,IBM Power System能从多方面来为认知商业的IT环境提供强大的支撑。首先是Power服务器本身的能力,它是一个非常”Power”的计算引擎。比如,Power CPU每核是8线程,而x86是2线程的;Power 的内存带宽是x86 CPU的4倍;Power CPU内部缓存也是x86的4倍。与x86平台相比,其性价比更高,更节约空间。
这是硬件的方面,而在软的方面,Power同样拥有非常强的竞争力。特别是它与OpenStack的紧密配合,能为用户提供一个更为灵活同时也是更为开放的云平台。比如,过去,在Openstack框架内要同时管理Power和x86平台就面临很大挑战,如今随着Openstack本身的技术进步,还有IBM在相关技术上持续投入。这些都已经不是问题。
“在未来的认知计算里,Power提供了强劲的计算能力,无论是在Hadoop Spark的大数据还是NoSQL、内存计算等新型应用当中都显示出独有的技术优势。”施东峰说。
实际上,究竟该选择一个什么样的云平台来为认知商业提供支撑,还可以从Watson的后台得到一些启示。李红介绍说,Watson是部署在IBM的BlueMix平台之上,BlueMix是一个搭建在Linux之上的PaaS平台,其底层选用的就是Power平台。其实Watson开发的时候是做过一个x86的版本。后来之所以决定跑在Power上,是由于Power的技术特点所决定。
“既然是跑在Linux之上,为什么不是x86硬件平台,而是Power硬件平台?”李红解释说,因为在认知计算,尤其大数据的计算方面,高的带宽、缓存以及更多线程的处理能力,是面向大数据的计算普遍急需的。以集群式的方式来完成这样庞大的任务、减少计算节点的数量,以及在有限的空间以及电力下提供更强劲的计算能力都成为了重要的衡量标准,而这些都是Power的优势领域,所以最终Watson转移到Power平台。
她还透露,Watson刚刚出来的时候实际上是在Power 7运行的,后来升级到Power 8以后,相比于Power 7同样的计算能力在Watson应用上提高了4-5倍性能,这也证明了Power尤其是Power8确实非常适合这样的应用的。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。