ZD至顶网服务器频道 11月23日 编译:近日消息,英特尔及其服务器制造商合作伙伴正在将赌注押在高性能计算,其很有可能成为企业的支柱产品。
芯片巨头扩充了其Scalable System Framework,推出了新的名为Omni-Path的体系架构,旨在让高性能计算(HPC)集群能够承担更多工作负载。
戴尔在周一发布了新的、基于英特尔体系架构和方法的系统,瞄准了高性能计算。Cray、富士通、HPE、联想、SGI、Penguin Computing也在计划围绕着英特尔的Omni-Path体系架构发布新产品。
英特尔表示,大批量的出货可能会出现在第一季度。戴尔针对基因组数据分析、制造业和研究领域推出了专门的高性能计算系统。
大数据的流行和分析工作负载将会把高性能计算作为主流,因此,高性能计算技术和结构方法将会意味着企业会拿出高性能计算的预算。英特尔将这种发展称为“高性能计算无处不在”的时代。
有了英特尔规范的高性能计算方法和体系架构,对于更多的领域来说,获取高性能计算系统进行分析、可视化和机器学习就变得更加容易了。
英特尔的Omni-Path体系架构旨在运行从入门级到规模化高性能计算集群。英特尔的Omni-Path被用于德克萨斯州高级计算中心和匹兹堡超级计算机中心。这些站点和其他的一些站点都在使用英特尔预产的Xeon Phi处理器。
至于戴尔,该公司表示它推出了新的戴尔网络H系列交换机和适配器,以及基于Omni-Path 的PowerEdge服务器。戴尔表示该公司同客户举行了咨询会议,讨论优化Omni-Path和英特尔的Xeon Phi芯片。
而且,戴尔和Mellanox将协作推出高性能计算的最佳实践,案例研究以及创新实验室。
好文章,需要你的鼓励
TAE Technologies在最新一轮投资中获1.5亿美元,累计融资约18亿美元。公司利用 AI 技术优化融合反应堆设计,目标于 2030 年代商业化发电,谷歌等巨头均参与合作。
这项来自首尔国立大学的研究提出了状态机推理(SMR)框架,解决了大型语言模型在信息检索中的过度思考问题。研究者将推理过程从冗长的令牌生成转变为离散动作(精炼、重排序、停止),使系统能够高效地在状态间转换。实验结果表明,SMR在BEIR和BRIGHT基准测试中显著提高了检索性能,同时减少了74.4%的计算资源消耗,证明其在不同语言模型和检索器中的通用性。这种结构化方法不仅解决了冗余轨迹和误导性推理问题,还为构建更高效的信息检索系统提供了新思路。
Nvidia 正在全球数据中心推广 AI 芯片,其最新 Blackwell 架构在 MLPerf 基准测试中获得最高性能,大幅加速下一代 AI 应用的训练与部署。
REASONING GYM是GitHub团队开发的一个突破性推理环境库,为强化学习模型提供可验证奖励。与传统固定数据集不同,它能生成无限训练数据并调整难度,涵盖代数、算术、认知、几何等100多个领域的数据生成器。研究显示,即使顶尖AI模型在复杂任务上表现也不佳,而专门针对推理训练的模型明显优于通用模型。更重要的是,在一个领域学习的技能可以意外地迁移到其他领域,这为提升AI推理能力提供了新路径。