ZD至顶网服务器频道 11月23日 编译:近日消息,英特尔及其服务器制造商合作伙伴正在将赌注押在高性能计算,其很有可能成为企业的支柱产品。
芯片巨头扩充了其Scalable System Framework,推出了新的名为Omni-Path的体系架构,旨在让高性能计算(HPC)集群能够承担更多工作负载。
戴尔在周一发布了新的、基于英特尔体系架构和方法的系统,瞄准了高性能计算。Cray、富士通、HPE、联想、SGI、Penguin Computing也在计划围绕着英特尔的Omni-Path体系架构发布新产品。
英特尔表示,大批量的出货可能会出现在第一季度。戴尔针对基因组数据分析、制造业和研究领域推出了专门的高性能计算系统。
大数据的流行和分析工作负载将会把高性能计算作为主流,因此,高性能计算技术和结构方法将会意味着企业会拿出高性能计算的预算。英特尔将这种发展称为“高性能计算无处不在”的时代。
有了英特尔规范的高性能计算方法和体系架构,对于更多的领域来说,获取高性能计算系统进行分析、可视化和机器学习就变得更加容易了。
英特尔的Omni-Path体系架构旨在运行从入门级到规模化高性能计算集群。英特尔的Omni-Path被用于德克萨斯州高级计算中心和匹兹堡超级计算机中心。这些站点和其他的一些站点都在使用英特尔预产的Xeon Phi处理器。
至于戴尔,该公司表示它推出了新的戴尔网络H系列交换机和适配器,以及基于Omni-Path 的PowerEdge服务器。戴尔表示该公司同客户举行了咨询会议,讨论优化Omni-Path和英特尔的Xeon Phi芯片。
而且,戴尔和Mellanox将协作推出高性能计算的最佳实践,案例研究以及创新实验室。
好文章,需要你的鼓励
Y Combinator合伙人Ankit Gupta与Anthropic预训练负责人Nick Joseph最近进行了一次深度对话。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
9月13日的PEC 2025 AI创新者大会暨第二届提示工程峰会上,“年度提问二:新工作时代:AI工作流由谁主导?”从企业实践到技术实现、从业务落地到战略决策,展开了一场高密度的思想碰撞与经验分享,将AI工作流背后的难题和解决路径彻底揭开。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。