ZD至顶网服务器频道 11月18日 编译:在过去的五十年里,摩尔定律一直表现得良好。这条定律是由英特尔的创始人戈登.摩尔在1965年提出的,摩尔定律指出处理器的处理能力总体上每年翻一番。在1975年,这个时间周期被修正为两年。
但是在今年的七月份,英特尔的首席执行官Brian Krzanich在财报电话会议中透露,由于引入了14纳米技术,“我们现在的节奏更接近于两年半,而不是两年。”他表示该公司正在想法设法回到摩尔定律两年处理能力翻一番的轨道上来。
是否太乐观?
IBM的研究员兼OpenPOWER 总裁Brad McCredie表示,根据IBM内部的研究,摩尔定律节奏放缓的程度甚至更大,也就是说我们每三年大约能够看到处理能力出现1.2-1.4左右的增长。“在过去三十年中技术前进的脚步现在已经放缓下来了”,他是在德克萨斯州举办的SC’15大会中的一次新闻发布会上做出这样的表示的。
这是一个问题,特别是在组织从“程序驱动时代的计算向认知时代计算转变之际”。
但是IBM认为它有办法帮助客户摆脱摩尔定律:硬件加速。McCredie表示,“加速计算才是未来。”他表示,“但是要想让它走出高性能计算的领域并进入通用计算的世界,我们还有几件事情要做。”
针对数据中心的FPGA加速器
所以,今天,该公司宣布将同FPGA芯片设计商Xilinx进行“为期数年的战略协作”。两家公司将联起手来,通过OpenPOWER Foundation致力于找到更好的方法处理机器学习、网络功能虚拟化(NFV)、基因、高性能计算和大数据分析等应用程序。
IBM的开发人员将针对OpenStack、Docker和Spark建立解决方案堆栈,结合了基于POWER的服务器,并具备Xilinx FPGA加速器。
McCredie还宣布该公司将把POWER 8芯片同Nvidia Tesla K80 GPUs结合在一起,使用NVIDIA的高速NVLINK互联。两家OEM——Penguin Computing和E4 Engineering将会把基于OpenPOWER设计理念的系统推向市场。
在迎接2016年的过程中,Mellanox更快的、所谓的智能网络交换机被低调地命名为Switch-IB 2。它通过处理器的Coherent Accelerator Processor Interface(CAPI)连接POWER 8系统。
IBM已经对于POWER 8/ Tesla GPU/ Mellanox已经有了参考客户:位于德克萨斯州休斯顿的贝勒大学。上个月,一组研究人员因为一些“突破性的基因研究”赢得了很多喝彩。他们使用POWER8系统完成了对硬件来说非常繁重的工作。
IBM已经将OPENPower Foundation建成了一个具有160多家成员的庞大联盟。它很容易被描述为“非英特尔”联盟。但是IBM+NVIDIA+Mellanox是一个非常强大的组合。谷歌当然是OpenPOWER的大拥趸。这对于企业来说不可能是坏事。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。