ZDNet至顶网服务器频道 05月21日编译:低功耗、高容量并降低电路板占用空间,在这份优势清单当中,AMD公司为其即将推出的高带宽内存(简称HBM)架构下足了宣传功夫。
AMD公司此前已经在一份白皮书中对HBM的细节情况作出了一番粗略说明,目前这套架构即将开始在部分Radeon 300系列显卡当中出现,同时也将作为AMD公司尚正处于规划当中的高性能计算集群化发展战略的组成部分。
除了功耗降低之外,新机制也将减少自身在垂直堆栈当中的占用空间:这套方案将利用硅通孔实现晶粒与晶粒间的连通,而微焊点则负责实现硅通孔间的物理隔离。
各硅通孔贯通整块芯片并达至逻辑晶粒,最终通过中介层接入封装基板。该中介层的作用是实现面向CPU或者GPU的快速连接,AMD公司宣称其性能表现“与芯片集成内存几乎没有区别”。
Hothardware网站预计,采用更宽总线——1024位,远大于GDDR5芯片上可怜的32位,意味着HBM将能够实现每秒100 GB的惊人传输能力,这一数字令GDDR5的每秒28 GB传输水平看起来如同笑话。
与此同时,这样的性能表现只需更低时钟速率即可实现,在HBM上需500 MHz,而在GDDR5上则需要1.75 GHz,再配合上1.3伏工作电压(GDDR5为1.5伏)意味着新规范能够实现50%的功耗缩减,且一举将每瓦带宽提升至过去的三倍(HBM为每瓦每秒35 GB,GDDR5则为每瓦每秒10.66 GB)。
AMD公司表示,更小物理尺寸在功耗节约与性能提升方面带来的另一大优势在于,HBM内存将能够与CPU/GPU一样被集成在同一基板之上。
Hothardware网站认为,采用这一技术的首款样品将于今年六月随AMD的下一代GPU一同亮相。
好文章,需要你的鼓励
谷歌研究团队推出VaultGemma,这是其首个采用差分隐私技术的大语言模型。该模型基于Gemma 2构建,拥有10亿参数,通过在训练阶段引入校准噪声来防止模型"记忆"敏感用户数据。研究团队建立了差分隐私缩放定律,平衡计算预算、隐私预算和数据预算。尽管添加差分隐私会影响准确性,但VaultGemma在性能上与同规模非私有模型相当。该模型现已在Hugging Face和Kaggle平台开放下载。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
英国宽带服务商Olilo正式推出多千兆宽带服务,专门面向技术人员、工程师、系统管理员和家庭实验室爱好者。该公司自建Layer 2网络基础设施,提供对称多千兆宽带,支持静态IPv4地址和原生IPv6。Olilo与伦敦三大互联网交换中心建立对等连接,在英国对等网络中排名第24位。服务经过150多名技术用户的付费封闭测试,并通过Discord社区持续收集用户反馈优化服务。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。