ZDNet至顶网服务器频道 03月25日 新闻消息:深度学习(Deep Learning)是近年来机器学习领域的热点。有分析认为,深度学习将成为未来计算机发展的必然趋势,而从谷歌大脑计划所引申出的众多“脑计划”也说明深度学习已经成为目前许多互联网企业在语音识别、图像识别等领域取得突破性进展的方向之一。在日前举行的全球最知名GPU技术大会GTC 2015上,来自中国的浪潮公司发布了首款高性能MPI集群版的Caffe深度学习计算框架,并开源公布所有代码,为深度学习的用户提供了更便捷、更高效的应用手段。
深度学习的表现方式是通过构建深层神经网络,来模拟人类大脑的工作原理,进而实现类似人脑思维方式的计算形式。我们都知道大脑的复杂程度是不言而喻的,因此深度学习所构建的神经网络也相当庞大,运行过程中需要海量的计算能力,这也为高性能计算提供了全新用武之地。继传统的科研应用之后,高性能计算凭借深度学习获得了全新的应用市场,以浪潮为首的中国高性能计算企业更是为深度学习进行了大量的研究工作。
CNN算法是深度学习领域所普遍采用的一项神经网络的构建模型,通过将特定的数据池如 ImageNet导入该模型进行层层训练,才能使机器达到人类要求的某项能力。 ImageNet是目前最常用的视觉数据池,它由斯坦福计算机科学家李飞飞(Fei-Fei Li)建设,里面包含了 1400 万经过标签分类的材料,囊括五花八门的图像。然而通过传统的CNN模型训练ImageNet非常耗时,大概需要几十天的时间才能完成训练。Caffe是目前最快的CNN架构,它最早由UC伯克利实验室完成单机单卡的开发,针对深度卷积神经网络(Deep Convolutional Neural Networks,CNN)训练所设计,传统CNN方法的耗时问题大大改善。然而随着训练模型越来越复杂、训练样本数越来越大,对于用户的使用来说,单机单卡已经不能满足用户的需求。
本次浪潮发布的集群版Caffe计算框架正是切中当下深度学习的迫切需求,它采用高性能计算行业成熟的MPI技术对Caffe版本进行数据并行的优化,该并行caffe计算框架基于伯克利的caffe架构进行开发,完全保留了原始caffe架构的特性,即:纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口等多种编程方式,具备上手快、速度快、模块化、开放性等众多特性,为用户提供了最佳的应用体验。
浪潮开发的集群并行Caffe计算框架已经在某超级计算机上进行部署并测试,测试结果显示,在保证正确率相同的情况下,浪潮Caffe在8节点上并行计算效率上提升10.7倍,大大提升了计算速度,加速业务的快速进行。浪潮已经将其开发的集群并行版Caffe软件代码开源发布在Github,这将有助于让更多的用户方便了解和应用这款软件,加速深度学习的应用发展。
好文章,需要你的鼓励
阿里巴巴通义千问团队发布开源编程模型Qwen3-Coder-480B-A35B-Instruct,专门用于软件开发辅助。该模型采用混合专家架构,拥有4800亿参数,支持25.6万token上下文长度,可在数秒内创建完整功能应用。在SWE-bench基准测试中得分67.0%,表现优于GPT-4和Gemini。模型基于Apache 2.0开源许可,企业可免费使用。AI研究者称其可能是目前最佳编程模型,特别适合企业级代码库理解、自动化代码审查和CI/CD系统集成。
T-Tech公司研究团队开发了SAE Boost助推器系统,通过训练专门的"错误补偿器"来增强AI理解工具对专业领域的理解能力。该系统在化学、俄语和外交等领域测试中显示出显著改进效果,同时完全保持原有通用能力。这种模块化设计为AI系统的持续优化提供了安全可靠的路径,对AI可解释性研究具有重要意义。
SecurityPal成立于2020年,专门处理企业间技术采购中的安全合规问卷。该公司结合AI引擎与位于尼泊尔加德满都的240人分析师团队,帮助供应商和买方快速完成安全评估。平台维护着250万个安全问题的专有语料库,采用"人机协作"模式确保准确性。客户包括OpenAI、Figma等知名企业,服务承诺24小时内完成问卷处理,相比传统手动流程速度提升高达87倍。
斯坦福大学研究团队开发出革命性AI系统,能够像生物学家一样"看懂"蛋白质三维结构并预测功能。该系统通过多层次分析方法,在蛋白质功能预测方面达到90%以上准确率,为新药开发和精准医疗开辟新道路。这项技术不仅加速了蛋白质研究进程,更为解决复杂疾病提供了强大的AI助手,预示着人工智能与生物医学融合的美好前景。