ZDNet至顶网服务器频道 03月25日 新闻消息:深度学习(Deep Learning)是近年来机器学习领域的热点。有分析认为,深度学习将成为未来计算机发展的必然趋势,而从谷歌大脑计划所引申出的众多“脑计划”也说明深度学习已经成为目前许多互联网企业在语音识别、图像识别等领域取得突破性进展的方向之一。在日前举行的全球最知名GPU技术大会GTC 2015上,来自中国的浪潮公司发布了首款高性能MPI集群版的Caffe深度学习计算框架,并开源公布所有代码,为深度学习的用户提供了更便捷、更高效的应用手段。
深度学习的表现方式是通过构建深层神经网络,来模拟人类大脑的工作原理,进而实现类似人脑思维方式的计算形式。我们都知道大脑的复杂程度是不言而喻的,因此深度学习所构建的神经网络也相当庞大,运行过程中需要海量的计算能力,这也为高性能计算提供了全新用武之地。继传统的科研应用之后,高性能计算凭借深度学习获得了全新的应用市场,以浪潮为首的中国高性能计算企业更是为深度学习进行了大量的研究工作。
CNN算法是深度学习领域所普遍采用的一项神经网络的构建模型,通过将特定的数据池如 ImageNet导入该模型进行层层训练,才能使机器达到人类要求的某项能力。 ImageNet是目前最常用的视觉数据池,它由斯坦福计算机科学家李飞飞(Fei-Fei Li)建设,里面包含了 1400 万经过标签分类的材料,囊括五花八门的图像。然而通过传统的CNN模型训练ImageNet非常耗时,大概需要几十天的时间才能完成训练。Caffe是目前最快的CNN架构,它最早由UC伯克利实验室完成单机单卡的开发,针对深度卷积神经网络(Deep Convolutional Neural Networks,CNN)训练所设计,传统CNN方法的耗时问题大大改善。然而随着训练模型越来越复杂、训练样本数越来越大,对于用户的使用来说,单机单卡已经不能满足用户的需求。
本次浪潮发布的集群版Caffe计算框架正是切中当下深度学习的迫切需求,它采用高性能计算行业成熟的MPI技术对Caffe版本进行数据并行的优化,该并行caffe计算框架基于伯克利的caffe架构进行开发,完全保留了原始caffe架构的特性,即:纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口等多种编程方式,具备上手快、速度快、模块化、开放性等众多特性,为用户提供了最佳的应用体验。
浪潮开发的集群并行Caffe计算框架已经在某超级计算机上进行部署并测试,测试结果显示,在保证正确率相同的情况下,浪潮Caffe在8节点上并行计算效率上提升10.7倍,大大提升了计算速度,加速业务的快速进行。浪潮已经将其开发的集群并行版Caffe软件代码开源发布在Github,这将有助于让更多的用户方便了解和应用这款软件,加速深度学习的应用发展。
好文章,需要你的鼓励
DDN推出Infinia对象存储系统,采用键值存储架构和Beta Epsilon树数据结构,实现读写性能平衡。系统在对象列表性能上比AWS快100倍,延迟降至毫秒级,支持多租户和SLA管理。通过与英伟达合作优化RAG管道,在AWS上实现22倍性能提升并降低60%成本。
大连理工大学和浙江大学研究团队提出MoR(Mixture of Reasoning)方法,通过将多种推理策略嵌入AI模型参数中,让AI能自主选择最适合的思考方式,无需人工设计专门提示词。该方法包含思维生成和数据集构建两阶段,实验显示MoR150模型性能显著提升,比基线模型提高2.2%-13.5%,为AI推理能力发展开辟新路径。
Alpine Linux核心开发者Ariadne Conill推出了Wayback项目,这是一个实验性的X兼容层,允许使用Wayland组件运行完整的X桌面环境。该项目本质上是一个提供足够Wayland功能来托管rootful Xwayland服务器的存根合成器。与现有的XWayland不同,Wayback旨在创建一个类似X11风格的基于Wayland的显示服务器,让用户能够继续使用传统的X11窗口管理器和桌面环境,而无需重写或替换这些熟悉的工具。
剑桥大学研究团队开发了FreNBRDF技术,通过引入频率修正机制显著提升了计算机材质建模的精度。该技术采用球面谐波分析提取材质频率信息,结合自动编码器架构实现高质量材质重建与编辑。实验表明,FreNBRDF在多项指标上超越现有方法,特别在频率一致性方面改善近30倍,为游戏开发、影视制作、电商预览等领域提供了重要技术支撑。