ZDNet至顶网服务器频道 03月02日 新闻消息:AMD公司近日宣布,惠普ProLiant DL380 Gen9已经采用为高性能计算而生的AMD FirePro™S9150服务器GPU(图形处理单元)。AMD FirePro™服务器GPU与惠普ProLiant DL380 Gen9服务器结合,专门用于各种应用计算,包括学术和政府集群,石油和天然气研究和深度神经网络。强大的软件生态系统支持AMD FirePro™S9150服务器GPU,让开发人员能够更好地利用其计算性能,包括针对OpenCL™2.0的支持。
AMD FirePro™服务器GPU采用首款以计算负载为中心的AMD GCN架构,支持增强双精度浮点计算,双精度计算性能突破每秒2万亿次大关。借助16GB GDDR5显存和235瓦最大功耗,AMD FirePro s9150服务器GPU提供巨大计算性能,同时最大化可用的功率预算。
AMD专业显卡总经理Karl Freund表示:“我们很自豪能够为惠普服务器用户提供AMD FirePro服务器GPU和计算能力,来管理各种场景的密集型计算负载。惠普ProLiant DL380 Gen9服务器用户可以受益于开放标准,如OpenCL™和OpenMP,也能受益于GPU计算和多GPU支持。”
惠普机架式和塔式服务器副总裁和总经理Peter Schrady表示:“借助AMD FirePro GPU,惠普ProLiant DL380可以比以往更快地运行图形密集型应用程序。我们的政府、学术界和能源客户将会看到性能优势,让惠普ProLiant服务器帮助他们完成更多工作和任务。”
借助AMD Stream技术,客户将能够利用AMD FirePro s9150服务器GPU提供的大规模并行处理能力,加速图形之外的应用程序。AMD FirePro s9150服务器GPU特点:
◆2.53 TFLOPS峰值双精度性能 – 最高领先竞争产品77%
◆5.07 TFLOPS峰值单精度性能 – 最高领先竞争产品18%
◆业界领先的显存配置 – 16GB GDDR5显存,512-bit显存界面,显存带宽高达320 GB/s
◆2816个流处理器(44个GCN计算单元)
◆支持纠错码 (ECC) 显存(仅限外部显存)
◆支持OpenCL™ 2.0
◆最大功耗235瓦
AMD FirePro s9150服务器GPU通过开启OpenMP,支持各行业工作负载处理。OpenMP是在C、C ++和Fortran语言中实现高层次并行计算的API。在细分市场,如石油和天然气,计算机辅助工程与计算科学,许多组织都在OpenMP上进行了大量投资,以创建可扩展的工作负载。 AMD与PathScale公司合作支持OpenMP 4.0,将允许用户在这些HPC领域利用AMD FirePro s9150服务器GPU的计算能力。
此外,惠普ProLiant WS460c图形刀片服务器采用了AMD FirePro™ S4000X服务器GPU。凭借高品质的3D图形和多重显示功能,AMD FirePro™ S4000X服务器GPU模块,为远程桌面提供了工作站级图形性能。AMD FirePro™ S4000X服务器GPU在设计上考虑到刀片服务器和刀片工作站平台特点,每个模块最大功耗45瓦,包括2GB GDDR5显存,显存带宽高达72GB/s,并支持多达六个高分辨率远程显示设备。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。