ZDNet至顶网服务器频道 01月24日 编译:Amazon公司已经同意收购一家“神秘”的以色列芯片制造商,并希望借此举为自身庞大的数据中心体系构搭建起新的定制化技术方案。
以色列金融报刊《Calcalist》抢先发表报道,指出Amazon方面已经兼并了位于以色列Yoqneam的Annapurna Labs公司,而Amazon方面随后也向《华尔街日报》以及其它几家新闻媒体确认了这一消息。
当下尚不完全明确Amazon希望借助此次收购达成的目标,因为到目前为止Annapurna公司仍然对与此次收购相关的内容保持沉默。
不过完全可以通过这家企业的发展历程作出一些推断,Annapurna公司由Avidor Willenz于四年前正式建立,这位创始人曾于1994年创立Galileo Technology公司(一家制造网络芯片与收发装置的企业)。
Galileo公司也许并未在半导体行业之外获得足够的关注度,但却切实吸引到了ARM芯片制造商Marvell的青睐。后者于2000年以约27亿美元股权将其招至麾下。
因此尽管Annapurna尚没有公开任何细节信息,但可以肯定其产品与Galileo业务较为相似,事实上,有匿名消息人士向《华尔街日报》透露称,这家以色列企业一直在着力开发中端网络芯片、为了将高性能表现与低功耗水平加以结合。
除此之外,Amazon方面也确实很有理由收购一家网络芯片厂商,至少其理由要比收购服务器CPU设计厂商更充分。
在去年十一月于拉斯维加斯召开的AWS re:Invent大会上,Amazon公司数据中心策划工作负责人James Hamilton就在接受采访时指出,虽然Amazon已经多次对ARM服务器进行评估、但其显然对作为主要处理器合作伙伴的英特尔公司更有信心。
Amazon公司的服务器芯片采购如此庞大,以至于英特尔甚至愿意专门针对AWS数据中心的实际需求开发定制化芯片版本,Hamilton表示,借于此,Amazon最新推出的弹性计算云(简称EC2)设备实例才能如期呈现在广大用户面前。
不过Amazon方面对自家数据中心工程技术任务的关注度极高,而且有计划在定制化CPU之外跨出更为积极的一步。其最终目标是,Amazon的所有硬件设备都采用定制化套件、并由原始设计制造商(简称ODM)负责构建,而网络方案正是其中最为重要的核心组成部分。
“就目前而言,网络已经成为我们乃至整个行业眼中最为紧要的技术层面,”Hamilton在AWS re:Invent大会的一次主题演讲中指出。“相较于所有其它设备的使用成本,网络设备成本的上涨幅度最高。这明显是种反摩尔定律的现象。我们的全部设备都能实现成本逐步下降,也因此使我们得以不断缩减服务价格,但网络很明显走上了一条错误的发展道路。这绝对是个大问题。”
目前我们尚不清楚Annapurna将在Amazon的下一步规划中扮演怎样的角色,不过如果前者确实具备云计算王者所需要的技术方案,那么Amazon可能已经开始对其融入进行部署。双方交易协议的细节信息尚未披露,不过有消息表明Amazon方面将为这笔收购支付3.5亿美元到3.75亿美元。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。