ZDNet至顶网服务器频道 01月24日 编译:Amazon公司已经同意收购一家“神秘”的以色列芯片制造商,并希望借此举为自身庞大的数据中心体系构搭建起新的定制化技术方案。

以色列金融报刊《Calcalist》抢先发表报道,指出Amazon方面已经兼并了位于以色列Yoqneam的Annapurna Labs公司,而Amazon方面随后也向《华尔街日报》以及其它几家新闻媒体确认了这一消息。
当下尚不完全明确Amazon希望借助此次收购达成的目标,因为到目前为止Annapurna公司仍然对与此次收购相关的内容保持沉默。
不过完全可以通过这家企业的发展历程作出一些推断,Annapurna公司由Avidor Willenz于四年前正式建立,这位创始人曾于1994年创立Galileo Technology公司(一家制造网络芯片与收发装置的企业)。
Galileo公司也许并未在半导体行业之外获得足够的关注度,但却切实吸引到了ARM芯片制造商Marvell的青睐。后者于2000年以约27亿美元股权将其招至麾下。
因此尽管Annapurna尚没有公开任何细节信息,但可以肯定其产品与Galileo业务较为相似,事实上,有匿名消息人士向《华尔街日报》透露称,这家以色列企业一直在着力开发中端网络芯片、为了将高性能表现与低功耗水平加以结合。
除此之外,Amazon方面也确实很有理由收购一家网络芯片厂商,至少其理由要比收购服务器CPU设计厂商更充分。
在去年十一月于拉斯维加斯召开的AWS re:Invent大会上,Amazon公司数据中心策划工作负责人James Hamilton就在接受采访时指出,虽然Amazon已经多次对ARM服务器进行评估、但其显然对作为主要处理器合作伙伴的英特尔公司更有信心。
Amazon公司的服务器芯片采购如此庞大,以至于英特尔甚至愿意专门针对AWS数据中心的实际需求开发定制化芯片版本,Hamilton表示,借于此,Amazon最新推出的弹性计算云(简称EC2)设备实例才能如期呈现在广大用户面前。
不过Amazon方面对自家数据中心工程技术任务的关注度极高,而且有计划在定制化CPU之外跨出更为积极的一步。其最终目标是,Amazon的所有硬件设备都采用定制化套件、并由原始设计制造商(简称ODM)负责构建,而网络方案正是其中最为重要的核心组成部分。
“就目前而言,网络已经成为我们乃至整个行业眼中最为紧要的技术层面,”Hamilton在AWS re:Invent大会的一次主题演讲中指出。“相较于所有其它设备的使用成本,网络设备成本的上涨幅度最高。这明显是种反摩尔定律的现象。我们的全部设备都能实现成本逐步下降,也因此使我们得以不断缩减服务价格,但网络很明显走上了一条错误的发展道路。这绝对是个大问题。”
目前我们尚不清楚Annapurna将在Amazon的下一步规划中扮演怎样的角色,不过如果前者确实具备云计算王者所需要的技术方案,那么Amazon可能已经开始对其融入进行部署。双方交易协议的细节信息尚未披露,不过有消息表明Amazon方面将为这笔收购支付3.5亿美元到3.75亿美元。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。